Sodium dimethyldithiocarbamate (SDDC) is a widely used heavy metal chelating agent in harmless treatment of wastewater and hazardous waste, but SDDC and its heavy metal chelates may leak into the environment and bring potential ecological risks. In this study, the model organism Caenorhabditis elegans was used to evaluate the toxic effect of SDDC and its heavy metal Cu, Pb chelates. Multiple endpoints were investigated by subacute exposure to SDDC (0.01-100 mg/L) and micro-sized Cu, Pb chelates of SDDC (1-100 mg/L). Our data indicated that the LC value of SDDC was 139.39 mg/L (95% Cl: 111.03, 174.75 mg/L). In addition, SDDC was found that concentration of 1 mg/L is a safe limit value for nematode C. elegans, and concentration above 1 mg/L caused adverse effects on the survival, growth, locomotion behaviors and reactive oxygen species (ROS) production of exposed nematodes. Furthermore, all tested SDDC-Cu and SDDC-Pb chelates had obviously lower toxic effect than untreated Cu, Pb metals. These two chelates also had a lower toxic effect than SDDC agent due to its more stable structure. Moreover, SDDC-Cu had a higher toxic effect than SDDC-Pb at the same concentration. Thus, our results suggest that SDDC as a kind of chelating agent applied in harmless treatment of heavy metals, the safe addition limit should not be exceeded.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.137666 | DOI Listing |
Cell Host Microbe
January 2025
The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; UCD School of Medicine, University College Dublin, Dublin, Ireland. Electronic address:
Intestinal fibrosis associated with Crohn's disease is a serious yet poorly understood clinical complication. In this issue of Cell Host & Microbe, Ahn and colleagues provide evidence that the adherent intestinal E. coli produced the metallophore yersiniabactin, which sequesters zinc to drive intestinal fibrosis in a HIF-1α-dependent manner.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden. Electronic address:
Nickel (Ni) is required in trace amounts (less than 500 µg kg) in plants to regulate metabolic processes, the immune system, and to act as an enzymatic catalytic cofactor. Conversely, when nickel is present in high concentration, it is considered as a toxic substance. Excessive human nickel exposure occurs through ingestion, inhalation, and skin contact, ultimately leading to respiratory, cardiovascular, and chronic kidney diseases.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil. Electronic address:
Plants encounter various environmental stresses throughout development, including shade, high light, drought, hypoxia, extreme temperatures, and metal toxicity, all of which adversely affect growth and productivity. Organic acids (OAs), besides serving as intermediates in the tricarboxylic acid (TCA) cycle, play crucial roles in multiple metabolic pathways and cellular compartments, including mitochondrial metabolism, amino acid metabolism, the glyoxylate cycle, and the photosynthetic mechanisms of C4 and CAM plants. OAs contribute to stress tolerance by acting as root chelating agents, regulating ATP production, and providing reducing power for detoxifying reactive oxygen species (ROS).
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China. Electronic address:
Transition metal-nitrogen-carbon (MNC) based on 3d metal atoms as promising non-precious metal catalysts have been extensively exploited for oxygen reduction reaction (ORR), but MNC with 4f rare earth metals have been largely ignored, most likely due to their large atomic radii that are difficult to coordinate with N dopants using conventional precursors. Herein, atomically dispersed dysprosium-nitrogen-carbon (DyNC) nanosheets were developed via the pyrolysis of anitrogen-containing chelate compound of 2, 4, 6-Tri (2-pyridyl) 1, 3, 5-triazine (TPTZ) ligand with Dy under the assistance of molten NaCl. The as-synthesized DyNC features specific moieties of single Dy atom coordinated by N and O as active sites for ORR, displaying excellent performance.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Wake Forest University School of Medicine, Winston-Salem, NC, USA.
Background: Insulin resistance (IR) is associated with abnormal tau-phosphorylation and IR markers in AD brain co-localize with neurofibrillary tangles. One strategy to overcome brain IR is to increase brain insulin is via intranasal insulin (INI) administration using specialized intranasal devices that deliver insulin to the brain. Our recent INI vs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!