A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Life cycle assessment of bagasse fiber reinforced biocomposites. | LitMetric

Life cycle assessment of bagasse fiber reinforced biocomposites.

Sci Total Environ

Pulp and Paper Program (PROCYP), Institute of Materials of Misiones (IMAM), National University of Misiones (UNaM), National Council of Technological and Technical Research (CONICET), Félix de Azara 1552, Postal Box: 3300 Posadas, Misiones, Argentina.

Published: June 2020

This study aims to evaluate the life cycle environmental implications of producing fiber-reinforced biocomposite pellets, compared with sugarcane- and petroleum-based polyethylene (PE) pellets. Life Cycle Assessment (LCA) methodology is used to evaluate the production of four types of pellets. LCA allows the evaluation of the benefits of improving the production of biobased materials by replacing part of the sugarcane bioPE with bagasse fibers. The functional unit selected was the production of 1 kg of plastic pellets. Primary data were collected from laboratory tests designed to obtain pulp fibers from bagasse and mix them with sugarcane bioPE. Two processes were studied to obtain fibers from bagasse: soda fractionation and hot water-soda fractionation. The results from the LCA show environmental improvements when reducing the amount of bioPE by replacing it with bagasse fibers in the categories of global warming, ozone formation, terrestrial acidification and fossil resource scarcity, when comparing to 100% sugarcane bioPE, and a reduction in global warming and fossil resource scarcity when compared to fossil-based PE. In contrast, results also indicate that there could be higher impacts in terms of ozone formation, freshwater eutrophication, and terrestrial acidification. Even though biocomposites result as a preferred option to bioPE, several challenges need to be overcome before a final recommendation is placed. The sensitivity analysis showed the importance of the energy source on the impacts of the processing of fibers. Thus, using clean energy to produce biobased materials may reduce the impacts related to the production stage. These results are intended to increase the attention of the revalorization of these residues and their application to generate more advanced materials. Further outlook should also consider a deeper evaluation of the impacts during the production of a plastic object and possible effects of the biobased materials during final disposal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.137586DOI Listing

Publication Analysis

Top Keywords

life cycle
12
biobased materials
12
sugarcane biope
12
cycle assessment
8
bagasse fibers
8
fibers bagasse
8
global warming
8
ozone formation
8
terrestrial acidification
8
fossil resource
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!