Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study aims to evaluate the life cycle environmental implications of producing fiber-reinforced biocomposite pellets, compared with sugarcane- and petroleum-based polyethylene (PE) pellets. Life Cycle Assessment (LCA) methodology is used to evaluate the production of four types of pellets. LCA allows the evaluation of the benefits of improving the production of biobased materials by replacing part of the sugarcane bioPE with bagasse fibers. The functional unit selected was the production of 1 kg of plastic pellets. Primary data were collected from laboratory tests designed to obtain pulp fibers from bagasse and mix them with sugarcane bioPE. Two processes were studied to obtain fibers from bagasse: soda fractionation and hot water-soda fractionation. The results from the LCA show environmental improvements when reducing the amount of bioPE by replacing it with bagasse fibers in the categories of global warming, ozone formation, terrestrial acidification and fossil resource scarcity, when comparing to 100% sugarcane bioPE, and a reduction in global warming and fossil resource scarcity when compared to fossil-based PE. In contrast, results also indicate that there could be higher impacts in terms of ozone formation, freshwater eutrophication, and terrestrial acidification. Even though biocomposites result as a preferred option to bioPE, several challenges need to be overcome before a final recommendation is placed. The sensitivity analysis showed the importance of the energy source on the impacts of the processing of fibers. Thus, using clean energy to produce biobased materials may reduce the impacts related to the production stage. These results are intended to increase the attention of the revalorization of these residues and their application to generate more advanced materials. Further outlook should also consider a deeper evaluation of the impacts during the production of a plastic object and possible effects of the biobased materials during final disposal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.137586 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!