Design study of fully wearable high-performance brain PETs for neuroimaging in free movement.

Phys Med Biol

Department of Nuclear Medicine, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China. School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.

Published: July 2020

A practical wearable brain PET scanner capable of dynamic neuroimaging during free bodily movement will enable potential breakthrough basic neuroscience studies and help develop imaging-based neurological diagnoses and treatments. Weight, brain coverage, and sensitivity are three fundamental technical obstacles in the development of Fully Wearable High-Performance (FWHP) brain PET scanners. The purpose of this study is to investigate the feasibility of building a FWHP brain PET using a limited volume of lutetium-yttrium oxyorthosilicate (LYSO) scintillator crystals. Six scanners, consisted of the same volume (2.66 kg) of LYSO scintillators with combinations of 2 different crystal pitches (3 mm and 1.5 mm) and 3 different crystal lengths (20 mm, 10 mm, and 5 mm), were simulated. The performances of the six scanners were assessed and compared with Siemen's HRRT brain PET and mCT whole-body PET, in terms of aperture, axial field of views (AFOV), sensitivity, spatial resolution, count rates, and image noise property. The time-of-flight (TOF) information was included in the image reconstruction to improve the effective sensitivity. The effects of the TOF was assessed by scanning a Jaszczak phantom and reconstructing images with the maximum likelihood expectation maximization (MLEM) algorithm with different timing settings (non-TOF, 500 ps, 200 ps, 100 ps and 50 ps Coincidence Time Resolution, CTR). The signal-noise ratio (SNR) of the images were assessed and compared with those of the HRRT scanner and mCT scanner. The results show that it is possible to construct a FWHP brain PET with better spatial resolution than the dedicated HRRT brain PET, comparable effective sensitivity (with 50 ∼ 100 ps CTR), and whole-brain coverage (23.7 cm inner diameter and 13.4 cm axial field of view) using 2.66 kg of LYSO.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ab8c90DOI Listing

Publication Analysis

Top Keywords

brain pet
24
fwhp brain
12
fully wearable
8
wearable high-performance
8
brain
8
neuroimaging free
8
266 lyso
8
assessed compared
8
hrrt brain
8
axial field
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!