AI Article Synopsis

  • Brain PET technology is advancing to improve early dementia diagnosis through the use of amyloid and tau tracers, focusing on molecular imaging for brain disorders.
  • A new brain-dedicated PET imaging device with a hemispherical detector arrangement was developed, offering high sensitivity with fewer detectors and improved image quality using time-of-flight (TOF) measurement.
  • The prototype, featuring a 12x12 lutetium fine silicate array and achieving a coincidence resolving time of 245 ps, demonstrated effective imaging capabilities, successfully distinguishing small structures and contrasting gray and white matter in brain phantoms.

Article Abstract

Brain PET, which has led research in molecular imaging and diagnosis of brain cancer, epilepsy and neurodegenerative disorders, is being spotlighted again to promote earlier diagnosis of dementia with the advent of amyloid and tau tracers. To meet this demand, in this paper, we developed a brain-dedicated PET imaging device with a hemispherical detector arrangement, which provides comparable sensitivity with fewer detectors than conventional cylindrical geometries. The introduction of the time-of-flight (TOF) measurement capability was a key point for the development to get a gain in the image signal-to-noise ratio. Currently, whole-body PET scanners with around 200-400 ps coincidence resolving time (CRT) are commercially available. In order to obtain the same TOF gain which can be obtained with 400 ps CRT for a 30 cm diameter object, 267 ps CRT will be required for a 20 cm diameter object such as the human head. In this work, therefore, we aimed at developing a TOF brain-dedicated PET prototype with the hemisphere detector arrangement and the CRT faster than 267 ps. The detector was composed of a 12 × 12 lutetium fine silicate (LFS) array coupled with a 12 × 12 multi-pixel photon counter (MPPC) array. Each LFS crystal with a size of 4.14 × 4.14 × 10 mm was individually coupled to a separate MPPC. Singles list-mode data from each detector were stored, and coincidences were identified using a coincidence-detection software algorithm. The CRT of 245 ps was finally achieved as the system average after a fine timing correction. For image reconstruction, we implemented the list-mode TOF-OSEM. For a small rod phantom, rods of 3 mm diameter were clearly separated. Also, images of the 3D Hoffman brain phantom, which demonstrated clear contrast between gray and white matter, supported the effect of TOF information.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ab8c91DOI Listing

Publication Analysis

Top Keywords

brain-dedicated pet
12
detector arrangement
12
pet prototype
8
hemispherical detector
8
diameter object
8
pet
5
detector
5
crt
5
245 ps-tof
4
ps-tof brain-dedicated
4

Similar Publications

Article Synopsis
  • Advances in brain PET scanners have improved spatial resolution, but head movement remains a primary cause of image blur, necessitating real-time motion tracking.
  • A new electromagnetic motion tracking (EMMT) system has been developed to enable precise motion correction for PET-CT imaging.
  • The EMMT integrates with existing PET scanners and uses advanced sensors to track head movements in real time, significantly enhancing imaging performance and accuracy.
View Article and Find Full Text PDF

Background: Brain-dedicated positron emission tomography (PET) systems offer high spatial resolution and sensitivity for accurate clinical assessments. Attenuation correction (AC) is important in PET imaging, particularly in brain studies. This study assessed the reproducibility of attenuation maps (µ-maps) generated by a specialized time-of-flight (TOF) brain-dedicated PET system for imaging using different PET tracers.

View Article and Find Full Text PDF

Amyloid brain-dedicated PET images can diagnose Alzheimer's pathology with Centiloid Scale.

Phys Med

May 2024

Biomedical Imaging Research Group (GIBI2(30)), La Fe Health Research Institute (IIS La Fe), Avenida Fernando Abril Martorell, València 46026, Spain; Radiology Department, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell, València 46026, Spain.

Purpose: To evaluate whether the Centiloid Scale may be used to diagnose Alzheimer's Disease (AD) pathology effectively with the only use of amyloid PET imaging modality from a brain-dedicated PET scanner.

Methods: This study included 26 patients with amyloid PET images with 3 different radiotracers. All patients were acquired both on a PET/CT and a brain-dedicated PET scanner (CareMiBrain, CMB), from which 4 different reconstructions were implemented.

View Article and Find Full Text PDF

. We propose a single-ended readout, multi-resolution detector design that can achieve high spatial, depth-of-interaction (DOI), and time-of-flight (TOF) resolutions, as well as high sensitivity for human brain-dedicated positron emission tomography (PET) scanners..

View Article and Find Full Text PDF

Time-of-flight (TOF) capability and high sensitivity are essential for brain-dedicated positron emission tomography (PET) imaging, as they improve the contrast and the signal-to-noise ratio (SNR) enabling a precise localization of functional mechanisms in the different brain regions.We present a new brain PET system with transverse and axial field-of-view (FOV) of 320 mm and 255 mm, respectively. The system head is an array of 6 × 6 detection elements, each consisting of a 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!