Brain PET, which has led research in molecular imaging and diagnosis of brain cancer, epilepsy and neurodegenerative disorders, is being spotlighted again to promote earlier diagnosis of dementia with the advent of amyloid and tau tracers. To meet this demand, in this paper, we developed a brain-dedicated PET imaging device with a hemispherical detector arrangement, which provides comparable sensitivity with fewer detectors than conventional cylindrical geometries. The introduction of the time-of-flight (TOF) measurement capability was a key point for the development to get a gain in the image signal-to-noise ratio. Currently, whole-body PET scanners with around 200-400 ps coincidence resolving time (CRT) are commercially available. In order to obtain the same TOF gain which can be obtained with 400 ps CRT for a 30 cm diameter object, 267 ps CRT will be required for a 20 cm diameter object such as the human head. In this work, therefore, we aimed at developing a TOF brain-dedicated PET prototype with the hemisphere detector arrangement and the CRT faster than 267 ps. The detector was composed of a 12 × 12 lutetium fine silicate (LFS) array coupled with a 12 × 12 multi-pixel photon counter (MPPC) array. Each LFS crystal with a size of 4.14 × 4.14 × 10 mm was individually coupled to a separate MPPC. Singles list-mode data from each detector were stored, and coincidences were identified using a coincidence-detection software algorithm. The CRT of 245 ps was finally achieved as the system average after a fine timing correction. For image reconstruction, we implemented the list-mode TOF-OSEM. For a small rod phantom, rods of 3 mm diameter were clearly separated. Also, images of the 3D Hoffman brain phantom, which demonstrated clear contrast between gray and white matter, supported the effect of TOF information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/ab8c91 | DOI Listing |
Med Phys
January 2025
Department of Radiology, Weill Cornell Medical College, Cornell University, New York, New York, USA.
Ann Nucl Med
September 2024
Division of Positron Emission Tomography Institute of Advanced Clinical Medicine, Kindai University Hospital, Osaka, Japan.
Background: Brain-dedicated positron emission tomography (PET) systems offer high spatial resolution and sensitivity for accurate clinical assessments. Attenuation correction (AC) is important in PET imaging, particularly in brain studies. This study assessed the reproducibility of attenuation maps (µ-maps) generated by a specialized time-of-flight (TOF) brain-dedicated PET system for imaging using different PET tracers.
View Article and Find Full Text PDFPhys Med
May 2024
Biomedical Imaging Research Group (GIBI2(30)), La Fe Health Research Institute (IIS La Fe), Avenida Fernando Abril Martorell, València 46026, Spain; Radiology Department, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell, València 46026, Spain.
Purpose: To evaluate whether the Centiloid Scale may be used to diagnose Alzheimer's Disease (AD) pathology effectively with the only use of amyloid PET imaging modality from a brain-dedicated PET scanner.
Methods: This study included 26 patients with amyloid PET images with 3 different radiotracers. All patients were acquired both on a PET/CT and a brain-dedicated PET scanner (CareMiBrain, CMB), from which 4 different reconstructions were implemented.
Phys Med Biol
January 2024
Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China.
. We propose a single-ended readout, multi-resolution detector design that can achieve high spatial, depth-of-interaction (DOI), and time-of-flight (TOF) resolutions, as well as high sensitivity for human brain-dedicated positron emission tomography (PET) scanners..
View Article and Find Full Text PDFPhys Med Biol
January 2024
Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
Time-of-flight (TOF) capability and high sensitivity are essential for brain-dedicated positron emission tomography (PET) imaging, as they improve the contrast and the signal-to-noise ratio (SNR) enabling a precise localization of functional mechanisms in the different brain regions.We present a new brain PET system with transverse and axial field-of-view (FOV) of 320 mm and 255 mm, respectively. The system head is an array of 6 × 6 detection elements, each consisting of a 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!