Photoactivatable fluorophores for single-molecule localization microscopy of live cells.

Methods Appl Fluoresc

Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, Coral Gables, FL, United States of America.

Published: May 2020

Photochemical reactions can be designed to convert either irreversibly or reversibly a nonemissive reactant into an emissive product. The irreversible disconnection of a photocleavable group from an emissive chromophore or the reversible interconversion of a photochromic component is generally exploited to implement these operating principles for fluorescence switching. In both instances, the interplay of activating radiation, to convert the nonemissive state into the emissive species, and exciting radiation, to produce fluorescence from the latter, can be exploited to switch fluorescence on in a given area of interest at a precise interval of time. Such a level of spatiotemporal control provides the opportunity to reconstruct sub-diffraction images with resolution at the nanometer level. Indeed, closely-spaced emitters can be switched on under photochemical control at distinct intervals of time and localized independently at the single-molecule level. In combination with appropriate intracellular targeting strategies, some of these photoactivatable fluorophores can be switched and localized inside live cells to permit the visualization of sub-cellular structures with a spatial resolution that would be impossible to achieve with conventional fluorophores. As a result, photoactivatable fluorophores can become invaluable probes for the implementation of super-resolution imaging schemes aimed at the elucidation of the fundamental factors controlling cellular functions at the molecular level.

Download full-text PDF

Source
http://dx.doi.org/10.1088/2050-6120/ab8c5cDOI Listing

Publication Analysis

Top Keywords

photoactivatable fluorophores
12
live cells
8
fluorophores single-molecule
4
single-molecule localization
4
localization microscopy
4
microscopy live
4
cells photochemical
4
photochemical reactions
4
reactions designed
4
designed convert
4

Similar Publications

In a search for dyes photoactivatable with visible light, fluorenes with substituents at positions 2 and 7 were prepared, and their absorption and emission spectra were studied. In particular, the synthesis route to 9-diazofluorenes with 2-(N,N-dialkylamino) and N-modified 7-(4-pyridyl) substituents was established. These compounds are initially non-fluorescent, undergo photolysis with UV or blue light, and-in non-polar media-provide orange- to red-emitting products with a large separation between absorption and emission bands.

View Article and Find Full Text PDF

Light-Activated Gene Expression System Using a Caging-Group-Free Photoactivatable Dye.

Angew Chem Int Ed Engl

January 2025

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 5650871, Japan.

Optical regulation of transcription using chemical compounds is an effective strategy to manipulate gene expression spatiotemporally. Conventional caging approaches with photoremovable protecting groups may require intense UV-light exposure and release potentially toxic byproducts. To address these problems, here we developed a light-mediated transcriptional regulation system by combining a caging-group-free photoactivatable dye PaX and a multidrug-binding transcriptional regulator QacR.

View Article and Find Full Text PDF

Light-activated fluorescence represents a potent tool for investigating subcellular structures and dynamics, offering enhanced control over the temporal and spatial aspects of the fluorescence signal. While alkyl-substituted tetrazine has previously been reported as a photo-trigger for various fluorophore scaffolds, its limited photochemical efficiency and high activation energy have constrained its widespread application at the biomolecular level. In this study, we demonstrate that a single sulfur atom substitution of tetrazine greatly enhances the photochemical properties of tetrazine conjugates and significantly improves their photocleavage efficiency.

View Article and Find Full Text PDF

Photolysis of aryl azides is a convenient method to approach more functionalized systems in chemical biology. Here, we present a set of photoactivatable aryl azides that undergo controlled reaction pathways within the cucurbit[7]uril (CB7) cavity upon photolysis. The fluorescence turn-on process is utilized for bioimaging.

View Article and Find Full Text PDF

Super-resolved cryogenic correlative light and electron microscopy is a powerful approach which combines the single-molecule specificity and sensitivity of fluorescence imaging with the nanoscale resolution of cryogenic electron tomography. Key to this method is active control over the emissive state of fluorescent labels to ensure sufficient sparsity to localize individual emitters. Recent work has identified fluorescent proteins (FPs) that photoactivate or photoswitch efficiently at cryogenic temperatures, but long on-times due to reduced quantum yield of photobleaching remain a challenge for imaging structures with a high density of localizations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!