Background: Focal cortical dysplasia (FCD) is a localized cortical malformation and considerable morphological overlap exists between FCD IIB and neurological lesions associated with Tuberous sclerosis complex (TSC). Abnormal mTOR pathway secondary to somatic mTOR mutation and TSC gene mutation linked to PI3K/AKT/mTOR pathway have supported the hypothesis of common pathogenesis involved. Role of converging pathway, viz. Wnt/β-Catenin and mTOR is unknown in FCD. We aimed to analyse FCD IIB for TSC1/TSC2 mutations, immunoreactivity of hamartin, tuberin, mTOR and Wnt signalling cascades, and stem cell markers.

Materials And Methods: Sixteen FCD IIB cases were retrieved along with 16 FCD IIA cases for comparison. Immunohistochemistry was performed for tuberin, hamartin, mTOR pathway markers, markers of stem cell phenotype, and Wnt pathway markers. Mutation analysis for TSC1 and TSC2 was performed by sequencing in 9 FCD cases.

Results: All FCD cases showed preserved hamartin and tuberin immunoreactivity. Aberrant immunoreactivity of phospho-P70S6 kinase, S6 ribosomal, phospho-S6 ribosomal and Stat3 was noted in FCD IIB, with variable phospho-4E-BP1 (45%) and absent phospho-Stat3 expression. Immunoreactivity for phospho-P70S6 kinase (100%), S6 ribosomal protein (100%) and Stat3 (100%) was noted in FCD IIA, but not for phospho-S6 ribosomal, phospho-4E-BP1 and phospho-Stat3. c-Myc immunoreactivity was noted in all FCD cases. Nestin (81%) and Sox 2 (88%) stained balloon cells in FCD IIB (44%), while in FCD IIA cases were negative. All FCD cases were immunopositive for Wnt, but were negative for β-Catenin and cyclin-D1. TSC mutations were detected in two cases of FCD IIB.

Conclusion: Abnormal mTOR pathway activation exists in FCD IIB and IIA, however, shows differential immunoreactivity profile, indicating varying degrees of dysregulation. Labelling of neuronal stem cell markers in balloon cells suggests they are phenotypically immature. TSC1/2 mutation play role in the pathogenesis of FCD. Deep targeted sequencing is preferred diagnostic technique since conventional sanger sequencing often fails to detect low-allele frequency variants involved in mTOR/TSC pathway genes, commonly found in FCD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anndiagpath.2020.151523DOI Listing

Publication Analysis

Top Keywords

fcd iib
24
fcd
18
mtor pathway
16
stem cell
12
fcd iia
12
fcd cases
12
pathway activation
8
focal cortical
8
cortical dysplasia
8
exists fcd
8

Similar Publications

Focal cortical dysplasias (FCDs) are local malformations of the human neocortex and a leading cause of intractable epilepsy. FCDs are classified into different subtypes including FCD IIa and IIb, characterized by a blurred gray-white matter boundary or a transmantle sign indicating abnormal white matter myelination. Recently, we have shown that myelination is also compromised in the gray matter of FCD IIa of the temporal lobe.

View Article and Find Full Text PDF

Focal cortical dysplasia (FCD) is a neurodevelopmental condition characterized by malformations of the cerebral cortex that often cause drug-resistant epilepsy. In this study, we performed multi-omics single-nuclei profiling to map the chromatin accessibility and transcriptome landscapes of FCD type II, generating a comprehensive multimodal single-nuclei dataset comprising 61,525 cells from 11 clinical samples of lesions and controls. Our findings revealed profound chromatin, transcriptomic, and cellular alterations affecting neuronal and glial cells in FCD lesions, including the selective loss of upper-layer excitatory neurons, significant expansion of oligodendrocytes and immature astrocytic populations, and a distinct neuronal subpopulation harboring dysmorphic neurons.

View Article and Find Full Text PDF

Spatial transcriptomics in focal cortical dysplasia type IIb.

Acta Neuropathol Commun

November 2024

Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.

Focal cortical dysplasia (FCD) type IIb (FCD IIb) is an epileptogenic malformation of the neocortex that is characterized by cortical dyslamination, dysmorphic neurons (DNs) and balloon cells (BCs). Approximately 30-60% of lesions are associated with brain somatic mutations in the mTOR pathway. Herein, we investigated the transcriptional changes around the DNs and BCs regions in freshly frozen brain samples from three patients with FCD IIb by using spatial transcriptomics.

View Article and Find Full Text PDF

Altered Gray Matter Myelin in Type IIb Focal Cortical Dysplasia.

Neurology

December 2024

From the Epilepsy Unit (L.R., D.D.S., C.P., R.G., M.d.C.), Division of Neurology V and Neuropathology (E.M.), and Neurosurgery Unit (M.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta; and Claudio Munari Epilepsy Surgery Centre (L.T.), Niguarda Hospital, Milano, Italy.

Background And Objectives: Myelin is altered in several neurologic disorders. Published data demonstrate reduced white matter myelin content and lower oligodendrocyte cell number in postsurgical brain specimens obtained from patients with focal cortical dysplasia (FCD) and temporal lobe epilepsy; a pathogenic role of dysfunctional myelin in focal epilepsies has been proposed. Based on this evidence, our study aims to investigate the myelination status in the gray matter in postsurgical brain specimens from patients with FCDIIb.

View Article and Find Full Text PDF
Article Synopsis
  • - The article discusses a rare finding of atypical pathological features in the brains of patients with drug-resistant epilepsy, revealing a mix of ganglioglioma and focal cortical dysplasia, which hasn't been documented before.
  • - Comprehensive tests including histopathological staining and molecular genetic analysis were conducted, and MRI scans showed unusual patterns such as "transmantle" distribution and local alterations in the brain structure.
  • - The findings suggest the presence of a new subgroup of gangliogliomas characterized by cellular atypia, indicating a potential link between different types of neuronal-glial tumors that could reshape our understanding of epilepsy-related brain pathology.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!