The persistence and bioaccumulation of environmental pollutants in water bodies, soils and living tissues remain alarmingly related to environmental protection and ecosystem restoration. Adsorption-based techniques appear highly competent in sequestering several environmental pollutants. In this review, the recent research findings reported on the assessments of composts and compost-amended soils as adsorbents of heavy metal ions, dye molecules and xenobiotics have been appraised. This review demonstrates clearly the high adsorption capacities of composts for umpteen environmental pollutants at the lab-scale. The main inferences from this review are that utilization of composts for the removal of heavy metal ions, dye molecules and xenobiotics from aqueous environments and soils is particularly worthwhile and efficient at the laboratory scale, and the adsorption behaviors and effectiveness of compost-type adsorbents for agrochemicals (e.g. herbicides and insecticides) vary considerably because of variabilities in structure, topology, bond connectivity, distribution of functional groups and interactions of xenobiotics with the active humic substances in composts. Compost-based field-scale remediation of environmental pollutants is still sparse and arguably much challenging to implement if, furthermore, real-world soil and water contamination issues are to be addressed effectively. Hence, significant research and process development efforts should be promptly geared and intensified in this direction by extrapolating the lab-scale findings in a cost-effective manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2020.110587 | DOI Listing |
Toxicol Res (Camb)
January 2025
Department of Zoology, Guru Nanak Dev University, Amritsar 143005, India.
Polybrominated diphenyl ethers (PBDEs) have been classified as a new class of persistent organic pollutants by the United Nations Environment Programs in 2009. In environment, PBDEs can undergo the degradation process to form less brominated diphenyl ethers. In the present study, the 96 h LC value for 4-bromodiphenyl ether (BDE-3) was found to be 3.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, Warsaw, 02-097, Poland.
Background: Pathobiology of asthma and chronic obstructive pulmonary disease (COPD) is associated with changes among respiratory epithelium structure and function. Increased levels of PM from urban particulate matter (UPM) are correlated with enlarged rate of asthma and COPD morbidity as well as acute disease exacerbation. It has been suggested that pre-existing pulmonary obstructive diseases predispose epithelium for different biological response than in healthy airways.
View Article and Find Full Text PDFSci Rep
January 2025
Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi'an, 710061, Shaanxi, China.
Bacteria, fungi, archaea, and viruses are reflective organisms that indicate soil health. Investigating the impact of crude oil pollution on the community structure and interactions among bacteria, fungi, archaea, and viruses in Calamagrostis epigejos soil can provide theoretical support for remediating crude oil pollution in Calamagrostis epigejos ecosystems. In this study, Calamagrostis epigejos was selected as the research subject and subjected to different levels of crude oil addition (0 kg/hm, 10 kg/hm, 40 kg/hm).
View Article and Find Full Text PDFSci Rep
January 2025
Environmental Toxicology & Bioremediation Laboratory (ETBL), Department of Zoology, University of Lucknow, Lucknow, 226007, India.
Herbicide paraquat dichloride, a potent redox agent found its way to natural water bodies and influences their health; however, its impact on the reproductive health of fish is potentially less studied and requires clear investigation. This study was conducted to elucidate its effect on the gonadal health of female fish, Channa punctatus over 60 days. The 96-h LC of test herbicide was calculated as 0.
View Article and Find Full Text PDFSci Rep
January 2025
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
Antimicrobial resistance (AMR) is a major cause of death worldwide, with 1.27 M direct deaths from bacterial drug-resistant infections as of 2019. Dissemination of multidrug-resistant (MDR) bacteria in the environment, in conjunction with pharmapollution by active pharmaceutical ingredients (APIs), create and foster an environmental reservoir of AMR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!