A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-resolution structure of a modular hyperthermostable endo-β-1,4-mannanase from Thermotoga petrophila: The ancillary immunoglobulin-like module is a thermostabilizing domain. | LitMetric

The endo-β-1,4-mannanase from the hyperthermostable bacterium Thermotoga petrophila (TpMan) is an enzyme that catalyzes the hydrolysis of mannan and heteromannan polysaccharides. Of the three domains that comprise TpMan, the N-terminal GH5 catalytic domain and the C-terminal carbohydrate-binding domain are connected through a central ancillary domain of unknown structure and function. In this study, we report the partial crystal structure of the TpMan at 1.45 Å resolution, so far, the first modular hyperthermostable endo-β-1,4-mannanase structure determined. The structure exhibits two domains, a (β/α)-barrel GH5 catalytic domain connected via a linker to the central domain with an immunoglobulin-like β-sandwich fold formed of seven β-strands. Functional analysis showed that whereas the immunoglobulin-like domain does not have the carbohydrate-binding function, it stacks on the GH5 catalytic domain acting as a thermostabilizing domain and allowing operation at hyperthermophilic conditions. The carbohydrate-binding domain is absent in the crystal structure most likely due to its high flexibility around the immunoglobulin-like domain which may act also as a pivot. These results represent new structural and functional information useful on biotechnological applications for biofuel and food industries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbapap.2020.140437DOI Listing

Publication Analysis

Top Keywords

gh5 catalytic
12
catalytic domain
12
domain
11
modular hyperthermostable
8
hyperthermostable endo-β-14-mannanase
8
thermotoga petrophila
8
thermostabilizing domain
8
carbohydrate-binding domain
8
domain connected
8
crystal structure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!