Crustacean species are considered as a major sector in the aquaculture industry that plays a fundamental role in the world's economy. However, with a wide range of various epidemic diseases in the industry, studies of immune-related genes such as toll-like receptor genes are of great importance. Recently, the TLR in crustacean species has been described to perform a vital role in defense of crustacean against the pathogens. Meanwhile, many TLR genes from crustacean were characterized, and their contribution discovered in innate immunity against several pathogens. This review was aimed to present an overview of the crustacean TLRs including structural features that contained three major domains: a leucine-rich repeat (LRR) domains, a transmembrane area (TM), and a conserved region called Toll/interleukin-1 receptor (TIR) domain. The tissue distribution patterns of TLR genes, which act as a guide for future research on which TLR gene or genes that can be expressed, at which tissue or tissues. We also described recent works on the expression of the TLR gene that evaluated the immune function after pathogen stimulation in shrimp, crab, and crayfish. Furthermore, we recommended a prospective for future investigation plan that might contribute to the development and management systems in the global crustacean aquaculture industry. Lastly, we assumed that a clear understanding of the expression pattern and biological function of crustacean TLR genes could serve as a baseline for future immunological studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2020.04.035 | DOI Listing |
J Exp Zool A Ecol Integr Physiol
January 2025
Global Health and Interdisciplinary Disease Research Center and Center for Genomics, College of Public Health, Interdisciplinary Research Building (IDRB), Tampa, Florida, USA.
Mice in the genus Peromyscus are abundant and geographically widespread in North America, serving as reservoirs for zoonotic pathogens, including Borrelia burgdorferi (B. burgdorferi), the causative agent of Lyme disease, transmitted by Ixodes scapularis ticks. While the white-footed mouse (Peromyscus leucopus (P.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA.
Endosomal toll-like receptors (TLRs) TLR7, TLR8, and TLR9 play an important role in systemic lupus erythematosus (SLE) pathogenesis. The proteolytic processing of these receptors in the endolysosome is required for signaling in response to DNA and single-stranded RNA, respectively. Targeting this proteolytic processing may represent a novel strategy to inhibit TLR-mediated pathogenesis.
View Article and Find Full Text PDFJ Anim Sci Biotechnol
January 2025
State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
Background: It is important to promote intestinal development and maturation of chicks for feed digestion and utilization, intestinal health, and disease resistance. This study aimed to investigate the effects of dietary yeast cell wall polysaccharides (YCWP) addition on intestinal development and maturation of chickens and its potential action mechanism.
Methods: 180 one-day-old male Arbor Acres broilers were randomly assigned to three groups containing control (basal diets without any antibiotics or anticoccidial drug), bacitracin methylene disalicylate (BMD)-treated group (50 mg/kg) and YCWP-supplemented group (100 mg/kg).
J Exp Med
March 2025
Division of Innate Immunity, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan.
Lysosomal stress due to the accumulation of nucleic acids (NAs) activates endosomal TLRs in macrophages. Here, we show that lysosomal RNA stress, caused by the lack of RNase T2, induces macrophage accumulation in multiple organs such as the spleen and liver through TLR13 activation by microbiota-derived ribosomal RNAs. TLR13 triggered emergency myelopoiesis, increasing the number of myeloid progenitors in the bone marrow and spleen.
View Article and Find Full Text PDFMetabolites
January 2025
School of Food and Biological Engineering, Hefei University of Technology, No. 193, Tunxi Road, Hefei 230009, China.
Polysaccharides produced by the edible fungus can regulate blood sugar levels and may represent a suitable candidate for the treatment of diabetes and its complications. However, there is limited information available about the mechanism of how polysaccharide (CCP) might improve diabetic conditions. This study investigated its effects on the intestinal microbiota, intestinal mucosal barrier, and inflammation in mice with type 2 diabetes mellitus (T2DM) induced by streptozotocin, and its potential mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!