Identifying Transcription Error-Enriched Genomic Loci Using Nuclear Run-on Circular-Sequencing Coupled with Background Error Modeling.

J Mol Biol

The Hong Kong University of Science and Technology-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China; Department of Chemistry, Centre of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong; Bioengineering Graduate Program, Department of Biological and Chemical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong. Electronic address:

Published: June 2020

RNA polymerase transcribes certain genomic loci with higher errors rates. These transcription error-enriched genomic loci (TEELs) have implications in disease. Current deep-sequencing methods cannot distinguish TEELs from post-transcriptional modifications, stochastic transcription errors, and technical noise, impeding efforts to elucidate the mechanisms linking TEELs to disease. Here, we describe background error model-coupled precision nuclear run-on circular-sequencing (EmPC-seq) to discern genomic regions enriched for transcription misincorporations. EmPC-seq innovatively combines a nuclear run-on assay for capturing nascent RNA before post-transcriptional modifications, a circular-sequencing step that sequences the same nascent RNA molecules multiple times to improve accuracy, and a statistical model for distinguishing error-enriched regions among stochastic polymerase errors. Applying EmPC-seq to the ribosomal RNA transcriptome, we show that TEELs of RNA polymerase I are not randomly distributed but clustered together, with higher error frequencies at nascent transcript 3' ends. Our study establishes a reliable method of identifying TEELs with nucleotide precision, which can help elucidate their molecular origins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2020.04.011DOI Listing

Publication Analysis

Top Keywords

genomic loci
12
nuclear run-on
12
transcription error-enriched
8
error-enriched genomic
8
run-on circular-sequencing
8
background error
8
rna polymerase
8
post-transcriptional modifications
8
nascent rna
8
rna
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!