RNA polymerase transcribes certain genomic loci with higher errors rates. These transcription error-enriched genomic loci (TEELs) have implications in disease. Current deep-sequencing methods cannot distinguish TEELs from post-transcriptional modifications, stochastic transcription errors, and technical noise, impeding efforts to elucidate the mechanisms linking TEELs to disease. Here, we describe background error model-coupled precision nuclear run-on circular-sequencing (EmPC-seq) to discern genomic regions enriched for transcription misincorporations. EmPC-seq innovatively combines a nuclear run-on assay for capturing nascent RNA before post-transcriptional modifications, a circular-sequencing step that sequences the same nascent RNA molecules multiple times to improve accuracy, and a statistical model for distinguishing error-enriched regions among stochastic polymerase errors. Applying EmPC-seq to the ribosomal RNA transcriptome, we show that TEELs of RNA polymerase I are not randomly distributed but clustered together, with higher error frequencies at nascent transcript 3' ends. Our study establishes a reliable method of identifying TEELs with nucleotide precision, which can help elucidate their molecular origins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2020.04.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!