Objective: This study aims to describe the epidemiological characteristics and survival rates of children with acute myeloid leukemia treated in hospitals in southern Brazil and compare them with international data.

Methods: A multicenter cohort study was conducted with retrospective data collection of all new patients with acute myeloid leukemia under 18 treated at five referral centers in pediatric hematology-oncology in southern Brazil between January 2005 and December 2015.

Results: Of the 149 patients with acute myeloid leukemia, 63.0% (n=94) were male. The median age at diagnosis was 10.5 years (range 0-18 years) and 40.3% (n=60) had a white blood cell count below 50,000/mm. The most common Franco-American-British (FAB) subtype was M3 (n=43, 28.9%). Nine (6.0%) patients had central nervous system disease. In M3 patients, overall survival (OS) was 69.2% and 3-year event-free survival was 67.7%; in non-M3 patients, these rates were 45.3% and 36.7%, respectively. In non-M3 patients, OS was significantly different between transplanted (61.8%) and non-transplanted (38.2%) patients (p=0.031).

Conclusions: These results show a higher prevalence of the Franco-American-British M3 subtype than that reported in the international literature, as well as a decreased OS compared with that of developed countries. Further multicenter Brazilian studies with a larger sample size are encouraged to better understand the characteristics of acute myeloid leukemia, and to improve the treatment and prognosis in this population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9432146PMC
http://dx.doi.org/10.1016/j.jped.2020.02.003DOI Listing

Publication Analysis

Top Keywords

acute myeloid
20
myeloid leukemia
20
children acute
8
leukemia treated
8
southern brazil
8
patients acute
8
non-m3 patients
8
patients
7
acute
5
myeloid
5

Similar Publications

Induced pluripotent stem cell (iPSC)-derived natural killer (NK) cells offer an opportunity for a standardized, off-the-shelf treatment with the potential to treat a wider population of acute myeloid leukaemia (AML) patients than the current standard of care. FT538 iPSC-NKs express a high-affinity, noncleavable CD16 to maximize antibody dependent cellular cytotoxicity, a CD38 knockout to improve metabolic fitness, and an IL-15/IL-15 receptor fusion preventing the need for cytokine administration, the main source of adverse effects in NK cell-based therapies. Here, we sought to evaluate the potential of FT538 iPSC-NKs as a therapy for AML through their effect on AML cell lines and primary AML cells.

View Article and Find Full Text PDF

Menin (MEN1) is a well-recognized powerful tumor promoter in acute leukemias (AL) with KMT2A rearrangements (KMT2Ar, also known as MLL) and mutant nucleophosmin 1 (NPM1m) acute myeloid leukemia (AML). MEN1 is essential for sustaining leukemic transformation due to its interaction with wild-type KMT2A and KMT2A fusion proteins, leading to the dysregulation of KMT2A target genes. MEN1 inhibitors (MIs), such as revumenib, ziftomenib, and other active small molecules, represent a promising new class of therapies currently under clinical development.

View Article and Find Full Text PDF

Background/objectives: Acute myeloid leukemia (AML) is an aggressive neoplasm. Although most patients respond to induction therapy, they commonly relapse due to recurrent disease in the bone marrow microenvironment (BMME). So, the disruption of the BMME, releasing tumor cells into the peripheral circulation, has therapeutic potential.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is an aggressive malignancy that poses significant challenges due to high rates of relapse and resistance to treatment, particularly in older populations. While therapeutic advances have been made, survival outcomes remain suboptimal. The evolution of DNA and RNA sequencing technologies, including whole-genome sequencing (WGS), whole-exome sequencing (WES), and RNA sequencing (RNA-Seq), has significantly enhanced our understanding of AML at the molecular level.

View Article and Find Full Text PDF

Genetic studies of haematological cancers have pointed out the heterogeneity of leukaemia in its different subpopulations, with distinct mutations and characteristics, impacting the treatment response. Next-generation sequencing (NGS) and genome-wide analyses, as well as single-cell technologies, have offered unprecedented insights into the clonal heterogeneity within the same tumour. A key component of this heterogeneity that remains unexplored is the intracellular metabolome, a dynamic network that determines cell functions, signalling, epigenome regulation, immunity and inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!