Objective: Accurate monitoring of joint kinematics in individuals with neuromuscular and musculoskeletal disorders within ambulatory settings could provide important information about changes in disease status and the effectiveness of rehabilitation programs and/or pharmacological treatments. This paper introduces a reliable, power efficient, and low-cost wearable system designed for the long-term monitoring of joint kinematics in ambulatory settings.
Methods: Seventeen healthy subjects wore a retractable string sensor, fixed to two anchor points on the opposing segments of the knee joint, while walking at three different self-selected speeds. Joint angles were estimated from calibrated sensor values and their derivatives in a leave-one-subject-out cross validation manner using a random forest algorithm.
Results: The proposed system estimated knee flexion/extension angles with a root mean square error (RMSE) of 5.0±1.0 across the study subjects upon removal of a single outlier subject. The outlier was likely a result of sensor miscalibration.
Conclusion: The proposed wearable device can accurately estimate knee flexion/extension angles during locomotion at various walking speeds.
Significance: We believe that our novel wearable technology has great potential to enable joint kinematic monitoring in ambulatory settings and thus provide clinicians with an opportunity to closely monitor joint recovery, develop optimal, personalized rehabilitation programs, and ultimately maximize therapeutic outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7709863 | PMC |
http://dx.doi.org/10.1109/TBME.2020.2988438 | DOI Listing |
Sci Rep
January 2025
Department of Orthopaedic and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Campus Grosshadern, Ludwig Maximilians University Munich, Munich, Germany.
In modern knee arthroplasty, surgeons increasingly aim for individualised implant selection based on data-driven decisions to improve patient satisfaction rates. The identification of an implant design that optimally fits to a patient's native kinematic patterns and functional requirements could provide a basis towards subject-specific phenotyping. The goal of this study was to achieve a first step towards identifying easily accessible and intuitive features that allow for discrimination between implant designs based on kinematic data.
View Article and Find Full Text PDFJ Electromyogr Kinesiol
January 2025
Research Academy of Grand Health, Faculty of Sports Sciences, Ningbo University, Ningbo, China. Electronic address:
Objective: We investigated the characteristics of hip, knee, and ankle joint reaction forces (JRFs) in stroke patients with spastic hemiplegia during sit-to-stand (Si-St) and stand-to-sit (St-Si) movements and explored the relationship between JRFs and joint moments.
Methods: Thirteen stroke patients with spastic hemiplegia and thirteen age-matched healthy subjects were recruited in this study. Three-dimensional motion capture system and force plates were employed to collect kinematic data and ground reaction forces during Si-St and St-Si tasks.
Sci Rep
January 2025
Department of Sport Biomechanics, Faculty of Sports Sciences, Bu-Ali Sina University, Hamedan, Iran.
Most sports and leisure activities involve repetitive movements in the upper limb, which are typically linked to pain and discomfort in the neck and shoulder area. Movement variability is generally expressed by changes in movement parameters from one movement to another and is a time-dependent feature of repetitive activities. The purpose of this study was to examine the effect of repeated movement-induced fatigue on biomechanical coordination and variability in athletes with and without chronic shoulder pain (CSP).
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Mineral Resources Exploitation and Utilization Technology and Equipment, Liaoning Technical University, Fuxin, 123000, Liaoning, China.
Loading water drilling rig on the anchor digging machine can effectively increase the tunneling efficiency. In order to avoid the interference between the water drilling rig and the anchor machine in the working process, it is necessary to calculate the joint variables of the drilling rig accurately. Using the robot kinematics analysis method, the kinematics model of the system is established.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, K61 Łukasiewicza 7/9, Wrocław, 50-370, Poland.
The phenomenon of snaking of vehicles can be caused by many factors. It results from the loss of the vehicle's straight-line direction of motion, which is intended by the driver. In this situation, for single-mass vehicles (like automobiles), special systems (braking) are activated, aiming to return the vehicle to the direction intended by the driver.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!