Biocompatible Delivery System for Metformin: Characterization, Radiolabeling and In Vitro Studies.

Anticancer Agents Med Chem

Department of Nuclear Applications, Ege University, Institute of Nuclear Science, Bornova, 35100, Izmir, Turkey.

Published: June 2021

Background: In recent years, the uses of nanotechnology in medicine have an increasing potential as an effective nanocarrier system. These systems are improved with the purpose of maximizing therapeutic activity and minimizing undesirable side-effects. Moreover, radiolabeled nanoparticles can be used as agents for diagnosis and therapeutic purposes in clinical applications. They have three main components: the core, the targeting biomolecule, and the radionuclide.

Objective: It is aimed to synthesize Metformin (MET) loaded Solid Lipid Nanoparticles (MET-SLN) and radiolabeled with technetium-99m tricarbonyl core.

Methods: The structure of synthesized nanoparticles was characterized by Fourier Transform Infrared Spectroscopy (FTIR). The particle size and morphology of nanoparticles were examined by Dynamic Light Scattering (DLS), and Scanning Electron Microscope (SEM). Quality control studies of radiolabeled MET-SLN [99mTc(CO)3-MET-SLN] were performed by High-Performance Liquid Radiochromatography (HPLRC) and Thin Layer Radiochromatography (TLRC).

Results: The radiolabeling yield of [99mTc(CO)3-MET-SLN] was found to be 88%. In vitro studies have been performed on cancer lines(MCF7, MDA-MD-231 breast, and HEPG2 liver cancer cells) to determine the biological behavior of 99mTc(CO)3-MET-SLNs.

Conclusion: The results showed that higher uptake values were observed on estrogen-positive MCF7 breast cancer cell line according to estrogen negative MDA-MB-231 breast cancer and HEPG2 liver cancer cell lines.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1871520620666200423081235DOI Listing

Publication Analysis

Top Keywords

vitro studies
8
hepg2 liver
8
liver cancer
8
breast cancer
8
cancer cell
8
cancer
5
biocompatible delivery
4
delivery system
4
system metformin
4
metformin characterization
4

Similar Publications

Zebrafish scales offer a variety of advantages for use in standard laboratories for teaching and research purposes. Scales are easily collected without the need for euthanasia, regenerate within a couple of weeks, and are translucent and small, allowing them to be viewed using a standard microscope. Zebrafish scales are especially useful in educational environments, as they provide a unique opportunity for students to engage in hands-on learning experiences, particularly in understanding cellular dynamics and in vitro culturing methods.

View Article and Find Full Text PDF

Purpose: Trophoblast cell-surface antigen 2 (Trop2) is overexpressed in various solid tumors and contributes to tumor progression, while its expression remains low in normal tissues. Trop2-targeting antibody-drug conjugate (ADC), sacituzumab govitecan-hziy (Trodelvy), has shown efficacy in targeting this antigen. Leveraging the enhanced specificity of ADCs, we conducted the first immunoPET imaging study of Trop2 expression in gastric cancer (GC) and triple-negative breast cancer (TNBC) models using Zr-labeled Trodelvy ([Zr]Zr-DFO-Trodelvy).

View Article and Find Full Text PDF

Development of a novel molecular probe for visualizing mesothelin on the tumor via positron emission tomography.

Eur J Nucl Med Mol Imaging

January 2025

Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China.

Objectives: Mesothelin (MSLN) is an antigen that is overexpressed in various cancers, and its interaction with tumor-associated cancer antigen 125 plays a multifaceted role in tumor metastasis. The serum MSLN expression level can be detected using enzyme-linked immunosorbent assay; however, non-invasive visualization of its expression at the tumor site is currently lacking. Therefore, the aim of this study was to develop a molecular probe for imaging MSLN expression through positron emission tomography (PET).

View Article and Find Full Text PDF

In this study, a novel inhibitor of ERCC1/XPF heterodimerization, A4, was used as an inhibitor of repair for DNA damage by platinum-based chemotherapeutics. Nano-formulations of A4 were developed, using self-assembly of the following block copolymers: methoxy-poly(ethylene oxide)-block-poly(α-benzyl carboxylate-ε-caprolactone) (PEO-b-PBCL), methoxy-poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL), or methoxy-poly(ethylene oxide)-block-poly (D, L, lactide) (PEO-b-PDLA 50-50). The nano-formulations were characterized for their average diameter, polydispersity, morphology, A4 encapsulation and in vitro release.

View Article and Find Full Text PDF

Purpose: To examine the association between blastocyst morphology and chromosomal status utilizing pre-implantation genetic testing for aneuploidy (PGT-A).

Methods: A single-center retrospective cohort study including 169 in-vitro fertilization cycles that underwent PGT-A using Next Generation Sequencing (2017-2022). Blastocysts were morphologically scored based on Gardner and Schoolcraft's criteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!