Chronic obstructive pulmonary disease (COPD), characterized by pulmonary dysfunction, is now also recognized to be associated with free radical-mediated vascular dysfunction. However, as previous investigations have utilized the brachial artery flow-mediated dilation technique, whether such vascular dysfunction exists in the locomotor muscle of patients with COPD remains unclear. Therefore, in patients with COPD ( = 13, 66 ± 6 yr) and healthy age- and sex-matched control subjects ( = 12, 68 ± 6 yr), second-by-second measurements of leg blood flow (LBF) (ultrasound Doppler), mean arterial pressure (MAP) (Finapres), and leg vascular conductance (LVC) were recorded before and during both 2 min of continuous upright seated continuous-movement passive leg movement (PLM) and a single-movement PLM (sPLM). In response to PLM, both peak change in LBF (COPD 321 ± 54, Control 470 ± 55 ∆mL/min) and LVC (COPD 3.0 ± 0.5, Control 5.4 ± 0.5 ∆mL·min·mmHg) were significantly attenuated in patients with COPD compared with control subjects ( < 0.05). This attenuation in the patients with COPD was also evident in response to sPLM, with peak change in LBF tending to be lower (COPD 142 ± 26, Control 169 ± 14 ∆mL/min) and LVC being significantly lower ( < 0.05) in the patients than the control subjects (COPD 1.6 ± 0.4, Control 2.5 ± 0.3 ∆mL·min·mmHg). Therefore, utilizing both PLM and sPLM, this study provides evidence of locomotor muscle vascular dysfunction in patients with COPD, perhaps due to redox imbalance and reduced nitric oxide bioavailability, which is in agreement with an increased cardiovascular disease risk in this population. This locomotor muscle vascular dysfunction, in combination with the clearly dysfunctional lungs, may contribute to the exercise intolerance associated with COPD. Utilizing both the single and continuous passive leg movement (PLM) models, which induce nitric oxide (NO)-dependent hyperemia, this study provides evidence of vascular dysfunction in the locomotor muscle of patients with chronic obstructive pulmonary disease (COPD), independent of central hemodynamics. This impaired hyperemia may be the result of an oxidant-mediated attenuation in NO bioavailability. In addition to clearly dysfunctional lungs, vascular dysfunction in locomotor muscle may contribute to the exercise intolerance associated with COPD and increased cardiovascular disease risk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7272759PMC
http://dx.doi.org/10.1152/japplphysiol.00568.2019DOI Listing

Publication Analysis

Top Keywords

vascular dysfunction
28
locomotor muscle
24
patients copd
20
copd
13
passive leg
12
leg movement
12
chronic obstructive
12
obstructive pulmonary
12
pulmonary disease
12
muscle vascular
12

Similar Publications

Purpose Of Review: What is the pathophysiology and clinical findings as well as management of patients presenting with INOCA/MINOCA (Ischemia/Myocardial Infarction with Non-Obstructive Coronary Arteries).

Recent Findings: INOCA/MINOCA has a complex pathophysiology. In this review article, we aim to summarize the complex pathophysiology and clinical diagnosis, and review the current management options.

View Article and Find Full Text PDF

Ripple Effects of Early Life Stress on Vascular Health.

Hypertension

January 2025

Cardio-Renal Physiology and Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, AL (C.E.K., G.C.K., J.S.P.).

The term early life stress encompasses traumatic events occurring before the age of 18 years, such as physical abuse, verbal abuse, household dysfunctions, sexual abuse, childhood neglect, child maltreatment, and adverse childhood experiences. Adverse psychological experiences in early life are linked to enduring effects on mental and physical health in adulthood. In this review, we first describe the effects and potential mechanisms of early life stress on the components of the vasculature.

View Article and Find Full Text PDF

High Glucose Treatment Induces Nuclei Aggregation of Microvascular Endothelial Cells via the - Pathway.

Arterioscler Thromb Vasc Biol

January 2025

Research Center of Clinical Medicine, Affiliated Hospital, Nantong University, China. (X.W., D.L.).

Background: Hyperglycemia is a major contributor to endothelial dysfunction and blood vessel damage, leading to severe diabetic microvascular complications. Despite the growing body of research on the underlying mechanisms of endothelial cell (EC) dysfunction, the available drugs based on current knowledge fall short of effectively alleviating these complications. Therefore, our endeavor to explore novel insights into the cellular and molecular mechanisms of endothelial dysfunction is crucial for the field.

View Article and Find Full Text PDF

Background: Interleukin-6 (IL-6) represents one of the main molecules involved in inflammatory responses, which can be altered in either patients with cognitive impairment or obstructive sleep apnea (OSA). The present study aimed to evaluate serum IL-6 levels and cognitive performance in patients with severe OSA (Apnea-Hypopnea Index - AHI >30/h).

Methods: Thirty patients with severe OSA were compared to 15 controls similar in age, sex, and Body Mass Index.

View Article and Find Full Text PDF

Background: Triglyceride-glucose-BMI (TyG-BMI) index is a surrogate marker of insulin resistance and an important predictor of cardiovascular disease. However, the predictive value of TyG-BMI index in the progression of non-severe aortic stenosis (AS) is still unclear.

Methods: The present retrospective observational study was conducted using patient data from Aortic valve diseases RISk facTOr assessmenT andprognosis modeL construction (ARISTOTLE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!