Monodisperse, stimuli-responsive microcapsules are required for applications involving precise delivery of chemical payloads but are difficult to fabricate with high throughput and control over capsule geometry and shell wall properties, especially in the presence of organic solvents. In this paper, we adapt a facile technique based on the interfacial tension of immiscible phases for the generation of monodisperse emulsion templates and microcapsules. In this technique, either one (single emulsion) or two (double emulsion) dispersed phases are simultaneously delivered while reciprocating across the interface of a stationary immiscible continuous phase. The interfacial tension of the continuous phase results in the separation of a monodisperse droplet in every cycle. Monodisperse single emulsion-templated microcapsules based on cyclic poly(phthalaldehyde) (cPPA) and polymethacrylate (Eudragit E100) shell walls are formed with hydrophobic cores. The acid-triggered release of Eudragit and cPPA microcapsules containing an oil core is demonstrated in an acidic media. Tunable, monodisperse double emulsion templates with an aqueous core are formed with sizes ranging from 295 μm to 1200 μm and reciprocation frequencies of 1 Hz to 7 Hz. The double emulsion templates are converted to monodisperse, responsive microcapsules with a hydrophilic core through photocuring or selective solvent evaporation to form the polymer shell wall. Microcapsules with a variety of polymeric shell walls based on photocurable polyisocyanurate, cPPA and polylactide are fabricated. The acid-triggered release of cPPA microcapsules containing an aqueous core with a slower degradation rate is also demonstrated. We achieve excellent control over the emulsion templates and microcapsules, with polydispersity less than 2% and the ability to predict the size reliably based on process parameters. The cost-effectiveness, ease of fabrication and potential for scale-up make this technique very promising for fabrication of a diverse range of stimuli-responsive microcapsules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0sm00301h | DOI Listing |
Food Res Int
February 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China. Electronic address:
Using Pickering emulsion (PE) as the carrier of active compounds in bio-based coatings constitutes a highly promising research domain. This study focused on creating a food-grade, biocompatible, and antibacterial PE to coat fresh fruits and vegetables, extending their shelf life. Hollow zein/soluble soybean polysaccharide nanoparticles loaded with thymol (H-ZSH/T) were produced using NaHCO as a sacrificial template to stabilize PE.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Textile Science & Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China. Electronic address:
Atmospheric pressure drying (APD) method holds great promise in the large-scale production of aerogels without specialized equipment and critical conditions. However, atmospheric-dried cellulose- based aerogels are challenged by the collapse of the pore walls induced by the capillary force that arises during solvent evaporation. This study prepared an atmospheric dried cellulose nanofiber (CNF) aerogel with a low shrinkage rate (17.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China. Electronic address:
Superhydrophilic hydrogel was typically used as the membrane coating on various substrates for oil/water separation. Nevertheless, these coatings may suffer from such limitations as poor adhesion strength and abrasion-resistance. Thus, the facile construction of hydrogel sponge with 3D connecting channels would be an ideal choice.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China. Electronic address:
Pickering emulsion template has aroused attention in the fabrication of porous composite materials. In this work, six nanoparticles including cellulose nanofiber/nanocrystal (CNF/CNC), chitin nanofiber/nanocrystals (ChNF/ChNC) and waxy/normal corn nanocrystal (WSNC/CSNC) were comparatively studied for their performance in fabricating porous composites with PDMS via Pickering emulsion templates. Among all, CNF and ChNF exhibited best emulsion stabilizing ability, while ChNF and ChNC at optimized concentrations enabled the formation of high internal phase emulsions with long-term stability of over 300 days.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK. Electronic address:
Biomass foam with porous structure has broad application prospects in thermal energy management. However, traditional foams can only passively insulate heat, unable to effectively store thermal energy and prolong the insulation time. In this work, microcapsules rich in paraffin were prepared using the Pickering emulsion template method with phosphorylated cellulose nanocrystals (CNC) as an emulsifier.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!