Over the last few decades, copper‑containing amine oxidase (Cu‑AO) from vegetal sources, and belonging to the class of diamine oxidase, has been documented to exhibit beneficial effects in both in vivo and ex vivo animal models of inflammatory or allergic conditions, including asthma‑like reaction and myocardial or intestinal ischemia‑reperfusion injuries. The aim of the present study was to assess the potential of vegetal Cu‑AO as an anti‑inflammatory and an antiallergic agent and to clarify its antioxidant properties. In cell‑free systems, the reactive oxygen species and reactive nitrogen species scavenging properties of Cu‑AO that is purified from Lathyrus sativus were investigated. Its effect on the formyl‑methionyl‑leucyl‑phenylalanine peptide (fMLP)‑activated cellular functions of human neutrophils were subsequently analyzed. The obtained results demonstrated that Cu‑AO is not a scavenger of superoxide or nitric oxide, and does not decompose hydrogen peroxide. However, it inhibits the fMLP‑dependent superoxide generation, elastase release and cell migration, and interferes with the process of calcium flux, supporting the idea that plant Cu‑AO can interact with human neutrophils to modulate their inflammatory function. Therefore, the importance of these properties on the possible use of vegetal Cu‑AO to control inflammatory conditions, particularly intestinal inflammation, is discussed in the current study.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijmm.2020.4535DOI Listing

Publication Analysis

Top Keywords

copper‑containing amine
8
amine oxidase
8
purified lathyrus sativus
8
vegetal cu‑ao
8
human neutrophils
8
cu‑ao
6
oxidase purified
4
lathyrus sativus modulator
4
modulator human
4
human neutrophil
4

Similar Publications

The presence of N-nitrosamine impurities in pharmaceutical products is well known. In 2019, it resulted in drug recall by the Food and Drug Administration (FDA). Soon, several groups identified the presence of many N-nitrosamines (NAs) in various Active Pharmaceutical Ingredients (APIs) and drug formulations worldwide.

View Article and Find Full Text PDF

In this study, we analyzed purine derivatives using multimatrix variation matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) with α-cyano-4-hydroxycinnamic acid (CHCA), 1,5-diaminonaphtalene (DAN), 5-formylsalicylic acid (FSA), and 5-nitrosalicylic acid (NSA) as matrices. Further, we focused on the abstraction/attachment of hydrogen from/to analytes and detected [M - H], [M + 2H] and/or [M + 3H] in MALDI MS spectra of compounds containing nitrogen and/or carbonyl oxygen. Although [M - H] generation of purine compounds in MALDI MS with conventional matrices was challenging, NSA-MALDI MS effectively yielded the [M - H]species of purine derivatives compared with CHCA, FSA, and DAN, and the [M - H]/[M + H] ratios reflected their structures, such as the substituting groups and positions.

View Article and Find Full Text PDF

Taking the natural product cerbinal as the lead compound, 30 novel 5-aryl-cyclopenta[]pyridine derivatives were designed and synthesized based on the previous bioactivity studies of the cyclopenta[]pyridines. The modification of the position-5 of compound was achieved by amination, bromination, and cross coupling using cerbinal as the raw material. The results of the bioactivity tests demonstrated that partial compounds exhibited superior activity against plant viruses compared to compound .

View Article and Find Full Text PDF

Electrochemical Reduction of CO to CHOH Catalyzed by an Iron Porphyrinoid.

J Am Chem Soc

January 2025

School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India.

Designing catalysts for the selective reduction of CO, resulting in products having commercial value, is an important area of contemporary research. Several molecular catalysts have been reported to facilitate the reduction of CO (both electrochemical and photochemical) to yield 2e/2H electron-reduced products, CO and HCOOH, and selective reduction of CO beyond 2e/2H is rare. This is partly because the factors that control the selectivity of CO reduction beyond 2e are not yet understood.

View Article and Find Full Text PDF

Background: Synthesis of organic@inorganic hNFs is achieved by the coordination of organic compounds containing amine, amide, and diol groups with bivalent metals. The use of bio-extracts containing these functional groups instead of expensive organic inputs such as DNA, enzymes, and protein creates advantages in terms of cost and applicability. In this study, the application potentials (antioxidant, antibacterial, anticancer, guaiacol, anionic, and cationic dye degradation) of hybrid (organic@inorganic) nanoflowers (hNFs) synthesized with Cu and snakeskin (SSS) were proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!