Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The synthesis and secretion of surfactant proteins (SPs) is an important sign of lung maturation. Furthermore, the morbidity of lung developmental diseases, including respiratory distress syndrome and bronchopulmonary dysplasia which are mainly caused by immature lung development and lack of SPs, is increasing. As is well known, multiple microRNAs (miRs/miRNAs) are able to influence lung development via numerous different signaling pathways. However, few studies examine the association between the miRNAs and lung developmental diseases. A previous study has demonstrated that miR‑431 was significantly (F=33.49; P<0.001) downregulated in the lung tissues of Sprague‑Dawley rats at 3 time points, embryonic day 19, embryonic day 21 and postnatal day 3. The present study reported that the regulation of miR‑431 may influence the expression of SPs. Thus, the further potential mechanisms of miR‑431 in negatively regulating lung development were examined in the present study. Stable A549 cell lines overexpressing or knocking down SMAD family member 4 (SMAD4) transfected with miR‑431 overexpressed or knocked down, and their control groups were established. Subsequently, the expression of bone morphogenetic protein 4 (BMP4), SMAD4 and SPs (SP‑A, SP‑B and SP‑C) at the RNA and protein levels were validated respectively by reverse transcription quantitative PCR and western blotting. miR‑431 exhibited a decreased expression, while BMP4 and SPs exhibited increased expression at the mRNA and protein levels in the SMAD4 knockdown group. Meanwhile, the expression of SPs were reduced in the SMAD4‑knockdown group via overexpressing miR‑431 and increased in the SMAD4‑overexpression group via inhibiting miR‑431. The present results indicate that SMAD4 negatively regulates the expression of SPs, and that miR‑431 negatively regulates the expression of SPs through inhibiting the BMP4/activin/transforming growth factor‑β signaling pathway by targeting SMAD4.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/ijmm.2020.4511 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!