A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thinking twice about sum scores. | LitMetric

Thinking twice about sum scores.

Behav Res Methods

University of California, Santa Barbara, CA, USA.

Published: December 2020

A common way to form scores from multiple-item scales is to sum responses of all items. Though sum scoring is often contrasted with factor analysis as a competing method, we review how factor analysis and sum scoring both fall under the larger umbrella of latent variable models, with sum scoring being a constrained version of a factor analysis. Despite similarities, reporting of psychometric properties for sum scored or factor analyzed scales are quite different. Further, if researchers use factor analysis to validate a scale but subsequently sum score the scale, this employs a model that differs from validation model. By framing sum scoring within a latent variable framework, our goal is to raise awareness that (a) sum scoring requires rather strict constraints, (b) imposing these constraints requires the same type of justification as any other latent variable model, and (c) sum scoring corresponds to a statistical model and is not a model-free arithmetic calculation. We discuss how unjustified sum scoring can have adverse effects on validity, reliability, and qualitative classification from sum score cut-offs. We also discuss considerations for how to use scale scores in subsequent analyses and how these choices can alter conclusions. The general goal is to encourage researchers to more critically evaluate how they obtain, justify, and use multiple-item scale scores.

Download full-text PDF

Source
http://dx.doi.org/10.3758/s13428-020-01398-0DOI Listing

Publication Analysis

Top Keywords

sum scoring
28
factor analysis
16
latent variable
12
sum
11
sum score
8
scale scores
8
scoring
7
factor
5
thinking sum
4
scores
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!