B cells are typically characterized by their ability to produce antibodies, function as secondary antigen-present cells, and produce various immunoregulatory cytokines. The regulatory B (Breg)-cell population is now widely accepted as an important modulatory component of the immune system that suppresses inflammation. Recent studies indicate that Breg-cell populations are small under physiological conditions but expand substantially in both human patients and murine models of chronic inflammatory diseases, autoimmune diseases, infection, transplantation, and cancer. Almost all B-cell subsets can be induced to form Breg cells. In addition, there are unique Breg-cell subsets such as B10 and Tim-1 B cells. Immunoregulatory function may be mediated by production of cytokines such as IL-10 and TGF-β and ensuing suppression of T cells, by direct cell-cell interactions, and (or) by altering the immune microenvironment. In this chapter, we describe in detail the discovery of Breg cells, their phenotypes, differentiation, function, contributions to disease, and therapeutic potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-981-15-3532-1_8 | DOI Listing |
Narra J
December 2024
Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
Systemic lupus erythematosus (SLE) is a prevalent autoimmune disease affecting multiple organ systems. Disease progression is inevitable as part of its natural course, necessitating aggressive therapeutic strategies, particularly with the use of immunosuppressants. Long-term use of steroids and other immunosuppressants is associated with significant adverse effects.
View Article and Find Full Text PDFJ Clin Immunol
January 2025
Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA.
Reduced function or hypomorphic variants in recombination-activating genes (RAG) 1 or 2 result in a broad clinical phenotype including common variable immunodeficiency (CVID) and even adult-onset disease. Milder RAG variants are less characterized. Here we describe the longitudinal course of a milder combined RAG deficiency in 3 of 7 siblings sharing the same RAG2 mutations over a 50-year study.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy.
B cells have emerged as central players in the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). However, although there is clear evidence for their involvement in cancer immunity, scanty data exist on the characterization of B cell phenotypes, bioenergetic profiles and possible interactions with T cells in the context of NSCLC. In this study, using polychromatic flow cytometry, mass cytometry, and spatial transcriptomics we explored the intricate landscape of B cell phenotypes, bioenergetics, and their interaction with T cells in NSCLC.
View Article and Find Full Text PDFParasitol Res
January 2025
School of Basic Medicine, Zunyi Medical University, Zunyi, China.
Parasitic infection is a complex process involving interactions among various immune cells. Regulatory B cells (Breg cells), a subset of B lymphocytes with immunosuppressive functions, play a role in modulating immune responses during infection to prevent excessive immune activation. This article reviews the origin, phenotype, and immunoregulatory mechanisms of Breg cells.
View Article and Find Full Text PDFNat Immunol
January 2025
Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA.
Here we analyzed the relative contributions of CD4 regulatory T cells expressing Forkhead box protein P3 (FOXP3) and CD8 regulatory T cells expressing killer cell immunoglobulin-like receptors to the control of autoreactive T and B lymphocytes in human tonsil-derived immune organoids. FOXP3 and GZMB respectively encode proteins FOXP3 and granzyme B, which are critical to the suppressive functions of CD4 and CD8 regulatory T cells. Using CRISPR-Cas9 gene editing, we were able to achieve a reduction of ~90-95% in the expression of these genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!