AI Article Synopsis

  • Asthenoteratospermia with MMAF is a major cause of male infertility, and WDR19 is a key gene involved in sperm flagella structure and function.
  • Whole exome sequencing on 65 patients revealed a homozygous mutation in WDR19 in one individual, showing severe sperm abnormalities and lack of WDR19 protein in sperm structures.
  • Despite these issues, the patient and his partner successfully achieved pregnancy through intracytoplasmic sperm injection (ICSI), highlighting the potential for positive outcomes even with genetic infertility factors.

Article Abstract

Background: Asthenoteratospermia with multiple morphological abnormalities in the sperm flagella (MMAF) is a significant cause of male infertility. WDR19 is a core component in the IFT-A complex and has a critical role in intraflagellar transport. However, the role of WDR19 mutations in male infertility has yet to be examined.

Methods And Results: We performed whole exome sequencing (WES) for 65 asthenoteratospermia individuals and identified a proband who carried a homozygous WDR19 (c.A3811G, p.K1271E) mutation from a consanguineous family. Systematic examinations, including CT scanning and retinal imaging, excluded previous ciliopathic syndromes in the proband. Moreover, semen analysis of this patient showed that the progressive rate decreased to zero, and the sperm flagella showed multiple morphological abnormalities. Scanning and transmission electron microscopy assays indicated that the ultrastructure of sperm flagella in the patient was completely destroyed, while immunofluorescence revealed that WDR19 was absent from the sperm neck and flagella. Moreover, IFT140 and IFT88, predicted to interact with WDR19 directly, were mis-allocated in the WDR19-mutated sperm. Notably, the MMAF subject harboring WDR19 variant and his partner successfully achieved clinical pregnancy through intracytoplasmic sperm injection (ICSI).

Conclusions: We identified WDR19 as a novel pathogenic gene for male infertility caused by asthenoteratospermia in the absence of other ciliopathic phenotypes, and that patients carrying WDR19 variant can have favorable pregnancy outcomes following ICSI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7311615PMC
http://dx.doi.org/10.1007/s10815-020-01770-1DOI Listing

Publication Analysis

Top Keywords

sperm flagella
16
male infertility
12
wdr19
9
multiple morphological
8
morphological abnormalities
8
wdr19 variant
8
sperm
7
flagella
5
novel homozygous
4
homozygous mutation
4

Similar Publications

CFAP65 is essential for C2a projection integrity in axonemes: implications for organ-specific ciliary dysfunction and infertility.

Cell Mol Life Sci

January 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.

Defects in motile cilia and flagella lead to motile ciliopathies, including primary ciliary dyskinesia (PCD), which manifests as multi-organ dysfunction such as hydrocephalus, infertility, and respiratory issues. CFAP65 variants are a common cause of male infertility, but its localization and function have remained unclear. In this study, we systematically evaluated CFAP65's role using Cfap65 knockout mice and human patients with CFAP65 variants.

View Article and Find Full Text PDF

IQUB mutation induces radial spoke 1 deficiency causing asthenozoospermia with normal sperm morphology in humans and mice.

Cell Commun Signal

January 2025

Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China.

Background: Asthenozoospermia (ASZ) accounts for about 20-40% of male infertility, and genetic factors, contributing to 30-40% of the causes of ASZ, still need further exploration. Radial spokes (RSs), a T-shaped macromolecular complex, connect the peripheral doublet microtubules (DMTs) to a central pair (CP), forming a CP-RS-DMT structure to regulate the beat frequency and amplitude of sperm flagella. To date, many components of RSs and their functions in human sperm flagella remain unclear.

View Article and Find Full Text PDF

Background: The following case report details the genetic evaluation and treatment of a 30-year-old male with a history of asthenoteratospermia and notable abnormalities of the sperm flagella.

Methods: Genetic evaluation was performed via a multi-gene panel of genes associated with primary ciliary dyskinesia and multiple morphological abnormalities of the sperm flagella (MMAF) prior to the couple's in vitro fertilization (IVF) cycle.

Results: Genetic evaluation was performed via a multi-gene panel of genes associated with primary ciliary dyskinesia and multiple morphological abnormalities of the sperm flagella (MMAF) prior to the couple's in vitro fertilization (IVF) cycle.

View Article and Find Full Text PDF

TCTEX1D2 is essential for sperm flagellum formation in mice.

Sci Rep

January 2025

Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan.

Flagella and cilia are widely conserved motile structures, in mammalian, sperm possess flagella. Large protein complexes called dynein, including cytoplasmic dynein 2 and axonemal dynein, play a role in the formation of cilia and flagella. The function of each subunit component of dynein complexes in sperm flagellum formation remains unclear.

View Article and Find Full Text PDF

Objectives: Acetylated tubulin is a hallmark of flagellar stability in spermatozoa, and studies have demonstrated the ability of CDYL to function as a tubulin acetyltransferase in spermatozoa. Of note, germline conditional knockout of Cdyl can lead to asthenoteratozoospermia and infertility in male mice. However, the role of CDYL gene in human fertility remains uncharacterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!