Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Learning to execute a response to obtain a reward or to inhibit a response to avoid punishment is much easier than learning the reverse, which has been referred to as "Pavlovian" biases. Despite a growing body of research into similarities and differences between active and observational learning, it is as yet unclear if Pavlovian learning biases are specific for active task performance, i.e., learning from feedback provided for one's own actions, or if they persist also when learning by observing another person's actions and subsequent outcomes. The present study, therefore, investigated the influence of action and outcome valence in active and observational feedback learning. Healthy adult volunteers completed a go/nogo task that decoupled outcome valence (win/loss) and action (execution/inhibition) either actively or by observing a virtual co-player's responses and subsequent feedback. Moreover, in a more naturalistic follow-up experiment, pairs of subjects were tested with the same task, with one subject as active learner and the other as observational learner. The results revealed Pavlovian learning biases both in active and in observational learning, with learning of go responses facilitated in the context of reward obtainment, and learning of nogo responses facilitated in the context of loss avoidance. Although the neural correlates of active and observational feedback learning have been shown to differ to some extent, these findings suggest similar mechanisms to underlie both types of learning with respect to the influence of Pavlovian biases. Moreover, performance levels and result patterns were similar in those observational learners who had observed a virtual co-player and those who had completed the task together with an active learner, suggesting that inclusion of a virtual co-player in a computerized task provides an effective manipulation of agency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8211594 | PMC |
http://dx.doi.org/10.1007/s00426-020-01340-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!