Spatial Patterns of Soil Fungal Communities Are Driven by Dissolved Organic Matter (DOM) Quality in Semi-Arid Regions.

Microb Ecol

College of Environmental Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China.

Published: July 2021

Soil fungi are ecologically important as decomposers, pathogens, and symbionts in nature. Understanding their biogeographic patterns and driving forces is pivotal to predict alterations arising from environmental changes in ecosystem. Dissolved organic matter (DOM) is an essential resource for soil fungi; however, the role of its quality in structuring fungal community patterns remains elusive. Here using Illumina MiSeq sequencing, we characterized total fungi and their functional groups in 45 soil samples collected from a 1500-km sampling transect through semi-arid regions in northern China, which are currently suffering great pressure from climate change. Total fungi and their functional groups were all observed to exhibit significant biogeographic patterns which were primarily driven by environmental variables. DOM quality was the best and consistent predictor of diversity of both total fungi and functional groups. Specifically, plant-derived DOM was associated with greater diversity relative to microbe-dominated origins. In addition, fungal diversity linearly increased with increases in degree of humification in DOM. Similarly, among all measured environmental variables, DOM quality had the strongest effects on the community composition of total fungi and functional groups. Together, our work contributes to the factors underlying fungal biogeographic patterns and adds detail to the importance of DOM quality in structuring fungal communities.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00248-020-01509-6DOI Listing

Publication Analysis

Top Keywords

dom quality
16
total fungi
16
fungi functional
16
functional groups
16
biogeographic patterns
12
fungal communities
8
dissolved organic
8
organic matter
8
matter dom
8
semi-arid regions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!