Understanding how plant carbon metabolism responds to environmental variables such as light is central to understanding ecosystem carbon cycling and the production of food, biofuels, and biomaterials. Here, we couple a portable leaf photosynthesis system to an autosampler for volatile organic compounds (VOCs) to enable field observations of net photosynthesis simultaneously with emissions of VOCs as a function of light. Following sample collection, VOCs are analyzed using automated thermal desorption-gas chromatograph-mass spectrometry (TD-GC-MS). An example is presented from a banana plant in the central Amazon with a focus on the response of photosynthesis and the emissions of eight individual monoterpenes to light intensity. Our observations reveal that banana leaf emissions represent a 1.1 +/- 0.1% loss of photosynthesis by carbon. Monoterpene emissions from banana are dominated by trans-β-ocimene, which accounts for up to 57% of total monoterpene emissions at high light. We conclude that the developed system is ideal for the identification and quantification of VOC emissions from leaves in parallel with CO2 and water fluxes.The system therefore permits the analysis of biological and environmental sensitivities of carbon metabolism in leaves in remote field locations, resulting in the emission of hydrocarbons to the atmosphere.•A field-portable system is developed for the identification and quantification of VOCs from leaves in parallel with leaf physiological measurements including photosynthesis and transpiration.•The system will enable the characterization of carbon and energy allocation to the biosynthesis and emission of VOCs linked with photosynthesis (e.g. isoprene and monoterpenes) and their biological and environmental sensitivities (e.g. light, temperature, CO).•Allow the development of more accurate mechanistic global VOC emission models linked with photosynthesis, improving our ability to predict how forests will respond to climate change. It is our hope that the presented system will contribute with critical data towards these goals across Earth's diverse tropical forests.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169044 | PMC |
http://dx.doi.org/10.1016/j.mex.2020.100880 | DOI Listing |
Sci Rep
January 2025
Department of Plant Experimental Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague, Czech Republic.
A wide range of portable chlorophyll meters are increasingly being used to measure leaf chlorophyll content as an indicator of plant performance, providing reference data for remote sensing studies. We tested the effect of leaf anatomy on the relationship between optical assessments of chlorophyll (Chl) against biochemically determined Chl content as a reference. Optical Chl assessments included measurements taken by four chlorophyll meters: three transmittance-based (SPAD-502, Dualex-4 Scientific, and MultispeQ 2.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Engineering Research Center of Environmentally-friendly and Efficient Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China. Electronic address:
A deep understanding of ammonia (NH) emissions from cropland can promote efficient crop production. To date, little is known about leaf NH emissions because of the lack of rapid detection methods. We developed a method for detecting leaf NH emissions based on portable NH sensors.
View Article and Find Full Text PDFBackground: Breeding programs for nutrient-efficient tea plant varieties could be advanced by the combination of genotyping and phenotyping technologies. This study was aimed to search functional SNPs in key genes related to the nitrogen-assimilation in the collection of tea plant (L.) Kuntze.
View Article and Find Full Text PDFTree Physiol
December 2024
Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center, University of Helsinki, Helsinki, FI 00014, Finland.
Understanding the diurnal and seasonal regulation of photosynthesis is an essential step to quantify and model the impact of the environment on plant function. Although the dynamics of photosynthesis have been widely investigated in terms of CO2 exchange measurements, a more comprehensive view can be obtained when combining gas-exchange and chlorophyll fluorescence (ChlF). Until now, integrated measurements of gas-exchange and ChlF have been restricted to short-term analysis using portable IRGA systems that include a fluorometer module.
View Article and Find Full Text PDFJ Photochem Photobiol B
January 2025
Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada. Electronic address:
Our interpretation of photosynthetically active radiation in plants has evolved since the 1970s with new data explaining the underlying mechanisms. To update McCree's founding work, this study explored the spectral response of photosynthesis in young tomato (Solanum lycopersicum cv. Beefsteak) and lettuce (Lactuca sativa cv.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!