Two-dimensional materials and their heterostructures constitute a promising platform to study correlated electronic states, as well as the many-body physics of excitons. Transport measurements on twisted graphene bilayers have revealed a plethora of intertwined electronic phases, including Mott insulators, strange metals and superconductors. However, signatures of such strong electronic correlations in optical spectroscopy have hitherto remained unexplored. Here we present experiments showing how excitons that are dynamically screened by itinerant electrons to form exciton-polarons can be used as a spectroscopic tool to investigate interaction-induced incompressible states of electrons. We study a molybdenum diselenide/hexagonal boron nitride/molybdenum diselenide heterostructure that exhibits a long-period moiré superlattice, as evidenced by coherent hole-tunnelling-mediated avoided crossings of an intralayer exciton with three interlayer exciton resonances separated by about five millielectronvolts. For electron densities corresponding to half-filling of the lowest moiré subband, we observe strong layer pseudospin paramagnetism, demonstrated by an abrupt transfer of all the (roughly 1,500) electrons from one molybdenum diselenide layer to the other on application of a small perpendicular electric field. Remarkably, the electronic state at half-filling of each molybdenum diselenide layer is resilient towards charge redistribution by the applied electric field, demonstrating an incompressible Mott-like state of electrons. Our experiments demonstrate that optical spectroscopy provides a powerful tool for investigating strongly correlated electron physics in the bulk and paves the way for investigating Bose-Fermi mixtures of degenerate electrons and dipolar excitons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-020-2191-2 | DOI Listing |
J Hazard Mater
January 2025
Bioprocesses Engineering Laboratory, Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal 575025, India. Electronic address:
Plastic pollution, especially microplastics (MPs), is a severe environmental threat. Due to the significant environmental issues posed by plastics, it is critical to use an effective and sustainable degradation technique. The study aimed to isolate and identify Indigenous bacterial strains from landfill leachate (LL) to evaluate its potential for degrading Polypropylene microplastics (PPMPs).
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Photonics and of Nanotechnologies- National Researcher Council (IFN-CNR), LNESS Laboratory, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy.
Manipulating the optical landscape of single quantum dots (QDs) is essential to increase the emitted photon output, enhancing their performance as chemical sensors and single-photon sources. Micro-optical structures are typically used for this task, with the drawback of a large size compared to the embedded single emitters. Nanophotonic architectures hold the promise to modify dramatically the emission properties of QDs, boosting light-matter interactions at the nanoscale, in ultracompact devices.
View Article and Find Full Text PDFChem Asian J
January 2025
Universidad Austral de Chile, Instituto de Ciencias Químicas, CHILE.
Plasmonic materials can be utilized as effective platforms to enhance luminescent signals of luminescent metal nanoclusters (LMNCs). Both surface enhanced fluorescence (SEF) and shell-isolated nanoparticle-enhanced fluorescence (SHINEF) strategies take advantage of the localized and increased external electric field created around the plasmonic metal surface when excited at or near their characteristic plasmonic resonance. In this context, we present an experimental and computational study of different plasmonic composites, (Ag) Ag@SiO2 and (Au) Au@SiO2 nanoparticles, which were used to enhance the luminescent signal of Au nanoclusters coated with glutathione (GSH) molecule (Au25GSH NCs).
View Article and Find Full Text PDFSensors (Basel)
December 2024
CNR-IPCF, Institute for Chemical-Physical Processes Messina, 98158 Messina, Italy.
Zinc oxide nanoparticles (ZnO NPs) with varying levels of nitrogen (N) doping were synthesized using a straightforward sol-gel approach. The morphology and microstructure of the N-doped ZnO NPs were examined through techniques such as SEM, XRD, photoluminescence, and Raman spectroscopy. The characterization revealed visible changes in the morphology and microstructure resulting from the incorporation of nitrogen into the ZnO lattice.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
Glutathione (GSH) plays a crucial role in various physiological processes and its imbalances are closely related to various pathological conditions. Probes for detection and imaging of GSH are not only useful for understanding GSH chemical biology but are also important for exploring potential theranostic agents. Herein, we report a fast intramolecular thiol-activated arylselenoamides ()-based fluorescent probe using 2,4-dinitrophenyl alkylthioether as a sulfydryl-selective receptor for the first time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!