Viruses of hyperthermophilic archaea represent one of the least understood parts of the virosphere, showing little genomic and morphological similarity to viruses of bacteria or eukaryotes. Here, we investigated virus diversity in the active sulfurous fields of the Campi Flegrei volcano in Pozzuoli, Italy. Virus-like particles displaying eight different morphotypes, including lemon-shaped, droplet-shaped and bottle-shaped virions, were observed and five new archaeal viruses proposed to belong to families Rudiviridae, Globuloviridae and Tristromaviridae were isolated and characterized. Two of these viruses infect neutrophilic hyperthermophiles of the genus Pyrobaculum, whereas the remaining three have rod-shaped virions typical of the family Rudiviridae and infect acidophilic hyperthermophiles belonging to three different genera of the order Sulfolobales, namely, Saccharolobus, Acidianus, and Metallosphaera. Notably, Metallosphaera rod-shaped virus 1 is the first rudivirus isolated on Metallosphaera species. Phylogenomic analysis of the newly isolated and previously sequenced rudiviruses revealed a clear biogeographic pattern, with all Italian rudiviruses forming a monophyletic clade, suggesting geographical structuring of virus communities in extreme geothermal environments. Analysis of the CRISPR spacers suggests that isolated rudiviruses have experienced recent host switching across the genus boundary, potentially to escape the targeting by CRISPR-Cas immunity systems. Finally, we propose a revised classification of the Rudiviridae family, with the establishment of six new genera. Collectively, our results further show that high-temperature continental hydrothermal systems harbor a highly diverse virome and shed light on the evolution of archaeal viruses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7305311 | PMC |
http://dx.doi.org/10.1038/s41396-020-0653-z | DOI Listing |
Insects
December 2024
Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
Rossi causes important agricultural losses in olive growing regions. Despite its economic relevance, the expansion history and biogeography of and other olive-feeding fruit flies remain unclear. We used mitogenomic data of species from a broad geographic range to explore possible historical biogeographic patterns in and other olive-feeding fruit flies.
View Article and Find Full Text PDFMicroorganisms
January 2025
State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China.
As transitional ecosystems between land and sea, estuaries are characterized by a unique environment that supports complex and diverse microbial communities. A comprehensive analysis of microbial diversity and ecological processes at different trophic levels is crucial for understanding the ecological functions of estuarine ecosystems. In this study, we systematically analyzed the diversity patterns, community assembly, and environmental adaptability of bacterial and protist communities using high-throughput sequencing techniques.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom.
Understanding host utilization by mosquito vectors is essential to assess the risk of vector-borne diseases. Many studies have investigated the feeding patterns of Culex mosquitoes by molecular analysis of blood-meals from field collected mosquitoes. However, these individual small-scale studies only provide a limited understanding of the complex host-vector interactions when considered in isolation.
View Article and Find Full Text PDFEcol Evol
January 2025
Instituto Milenio de Oceanografía (IMO) Universidad de Concepción Concepción Chile.
Mechanisms driving the spatial and temporal patterns of species distribution in the Earth's largest habitat, the deep ocean, remain largely enigmatic. The late Miocene to the Pliocene (~23-2.58 Ma) is a period that was marked by significant geological, climatic, and oceanographic changes.
View Article and Find Full Text PDFBMC Biol
January 2025
Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China.
Background: The advancements in second-/third-generation sequencing technologies, alongside computational innovations, have significantly enhanced our understanding of the genomic structure of Y-chromosomes and their unique phylogenetic characteristics. These researches, despite the challenges posed by the lack of population-scale genomic databases, have the potential to revolutionize our approach to high-resolution, population-specific Y-chromosome panels and databases for anthropological and forensic applications.
Objectives: This study aimed to develop the highest-resolution Y-targeted sequencing panel, utilizing time-stamped, core phylogenetic informative mutations identified from high-coverage sequences in the YanHuang cohort.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!