AI Article Synopsis

  • Antibiotic exposure in infants is linked to increased odds of obesity in childhood, particularly for those who received multiple courses of antibiotics.
  • Significant associations were found between antibiotic exposure and higher body mass index and abdominal circumference measurements, especially in boys.
  • The study also noted that repeated antibiotic use led to changes in gut microbiota, potentially contributing to these metabolic outcomes.

Article Abstract

Background: In animal studies early life antibiotic exposure causes metabolic abnormalities including obesity through microbiota disruption, but evidence from human studies is scarce. We examined involvement of gut microbiota in the associations between infant antibiotic exposure and childhood adiposity.

Methods: Infant antibiotic exposure in the first year of life was ascertained using parental reports during interviewer-administered questionnaires. Primary outcomes were childhood obesity [body mass index (BMI) z-score > 95th percentile] and adiposity [abdominal circumference (AC) and skinfold (triceps + subscapular (SST)) measurements] determined from ages 15-60 months. At age 24 months, when the gut microbiota are more stable, stool samples (n = 392) were collected for the gut microbiota profiling using co-abundancy networks. Associations of antibiotic exposure with obesity and adiposity (n = 1016) were assessed using multiple logistic and linear mixed effects regressions. Key bacteria associated with antibiotics exposure were identified by partial redundancy analysis and multivariate association with linear models.

Results: Antibiotic exposure was reported in 38% of study infants. In a fully adjusted model, a higher odds of obesity from 15-60 months of age was observed for any antibiotic exposure [OR(95% CI) = 1.45(1.001, 2.14)] and exposure to ≥3 courses of antibiotics [2.78(1.12, 6.87)]. For continuous adiposity indicators, any antibiotic exposure was associated with higher BMI z-score in boys [β = 0.15(0.01, 0.28)] but not girls [β = -0.04(-0.19, 0.11)] (P interaction = 0.026). Similarly, exposure to ≥3 courses of antibiotics was associated with higher AC in boys [1.15(0.05, 2.26) cm] but not girls [0.57(-1.32, 2.45) cm] (P interaction not significant). Repeated exposure to antibiotics was associated with a significant reduction (FDR-corrected P values < 0.05) in a microbial co-abundant group (CAG) represented by Eubacterium hallii, whose proportion was negatively correlated with childhood adiposity. Meanwhile, a CAG represented by Tyzzerella 4 was positively correlated with the repeated use of antibiotics and childhood adiposity.

Conclusions: Infant antibiotic exposure was associated with disruption of the gut microbiota and the higher risks of childhood obesity and increased adiposity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343523PMC
http://dx.doi.org/10.1038/s41366-020-0572-0DOI Listing

Publication Analysis

Top Keywords

antibiotic exposure
32
gut microbiota
16
infant antibiotic
12
exposure
12
antibiotic
8
exposure childhood
8
childhood obesity
8
obesity adiposity
8
15-60 months
8
months age
8

Similar Publications

Background: The bi-directional autophagy and inflammation network becomes progressively dysregulated with age, with systemic inflammation as a biomarker of this dysregulation including in Alzheimer's Disease (AD). We hypothesize that interventions which target the shared feature of systemic inflammation in the biology of aging and AD, via regulation of the autophagy-inflammation network, will prevent the conversion to disease pathogenesis in AD as well as improve healthspan and longevity in aging populations. While previous studies report benefits of mTOR inhibition including rapamycin in transgenic mouse models of familial AD, the present studies aim to evaluate this pathway in a model of sporadic, late onset AD (LOAD) and test the contribution of AMP-activated protein kinase (AMPK) as a critical regulator of the mTOR pathway.

View Article and Find Full Text PDF

Background: Fluid overload (FO) in the intensive care unit (ICU) is common, serious, and may be preventable. Intravenous medications (including administered volume) are a primary cause for FO but are challenging to evaluate as a FO predictor given the high frequency and time-dependency of their use and other factors affecting FO. We sought to employ unsupervised machine learning methods to uncover medication administration patterns correlating with FO.

View Article and Find Full Text PDF

Background: Sirolimus is a commonly used immunosuppressant administered after solid organ transplantation. It is characterized by a narrow therapeutic window and highly variable exposure, necessitating the identification of the sources of variability and design of individualized drug therapies.

Aim: This study aimed to perform a population pharmacokinetic (PK) analysis of sirolimus in adult liver transplant recipients and develop dosing regimen recommendations according to patient characteristics.

View Article and Find Full Text PDF

Introduction: Long-acting injectable cabotegravir (CAB-LA) for pre-exposure prophylaxis significantly reduced HIV acquisition in HPTN 084. We report on the safety and CAB-LA pharmacokinetics in pregnant women during the blinded period of HPTN 084.

Methods: Participants were randomized 1:1 to either active cabotegravir (CAB) plus tenofovir disoproxil fumarate/emtricitabine (TDF/FTC) placebo or active TDF/FTC plus CAB placebo.

View Article and Find Full Text PDF

MOFs-based adsorbents for the removal of tetracycline from water and food samples.

Sci Rep

January 2025

Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos, 13565-905, SP, Brazil.

Tetracyclines (TCs) are widely employed for the prevention and treatment of diseases in animals besides being deployed to promote animal growth and weight gain. Such practices result in trace amounts of TCs occurrence in water and foodstuffs of animal origin, including eggs and milk, thus posing severe health risks to humans. To ensure the food and water safety and to avoid exposure to humans, the removal of TC residues from food and water has recently garnered a considerable attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!