Biopesticide synergy when combining plant flavonoids and entomopathogenic baculovirus.

Sci Rep

Plant Polymer Research Unit, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N, University Street, Peoria, IL, 61604, USA.

Published: April 2020

Four crop plants known to be hosts for the lepidopteran Trichoplusia ni (soybean, green bean, cotton, and cabbage) were treated with the biopesticide AfMNPV baculovirus in a dosage response assay. Treated soybean had, on average, a 6-fold increase in virus activity compared with the other crops. Leaf trichomes on soybeans were not found to be responsible for the observed increase of insecticidal activity. Three flavonoid compounds (daidzein, genistein, and kaempferol) were uniquely found only in the soybean crop, and were not detected in cotton, cabbage, or green bean plant matter. The individual flavonoid compounds did not cause T ni. mortality in no-virus assays when incorporated into artificial insect diet. The combination of the three flavonoid compounds at leaf level concentrations significantly increased baculovirus activity in diet incorporation assays. When the daidzein, genistein, and kaempferol were added to artificial diet, at 3.5-6.5 × leaf level concentrations, virus activity increased 1.5, 2.3, and 4.2-fold for each respective flavonoid. The soybean flavonoid compounds were found to synergistically improve baculovirus activity against T. ni.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7176681PMC
http://dx.doi.org/10.1038/s41598-020-63746-6DOI Listing

Publication Analysis

Top Keywords

flavonoid compounds
16
green bean
8
cotton cabbage
8
virus activity
8
three flavonoid
8
daidzein genistein
8
genistein kaempferol
8
leaf level
8
level concentrations
8
baculovirus activity
8

Similar Publications

Plants and microorganisms coexist within complex ecosystems, significantly influencing agricultural productivity. Depending on the interaction between the plant and microbes, this interaction can either help or harm plant health. Microbes interact with plants by secreting proteins that influence plant cells, producing bioactive compounds like antibiotics or toxins, and releasing molecules such as N-acyl homoserine lactones to coordinate their behaviour.

View Article and Find Full Text PDF

Introduction: As a widely used Chinese herbal medicine, Mume Fructus pulp (MFP) has rich nutritional value and biological activity, but its quality control research is relatively scarce.

Objectives: The objective of the study was to evaluate the quality difference between MFPs from different origins and its adulterant apricot pulp (APP), and to identify potential quality markers.

Methods: The chemical compositions were identified by untargeted metabolomics analysis based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry combined with feature-based molecular networking.

View Article and Find Full Text PDF

Phyto-nanotechnology provides an eco-friendly approach for synthesizing biocompatible metal nanoparticles (NPs) with therapeutic potential. (LI) has been historically valued for its diverse medicinal applications, especially its exceptional biological potency against various skin diseases, attributed to its rich abundance of bioactive compounds. Therefore, herein, plant-based iron and zinc NPs were biofabricated via sustainable and simple methods, using crude extracts of the aerial parts of LI as reducing, coating, and stabilizing agents.

View Article and Find Full Text PDF

The Unripe Carob Extract ( L.) as a Potential Therapeutic Strategy to Fight Oxaliplatin-Induced Neuropathy.

Nutrients

December 2024

Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy.

Background: Oxaliplatin-induced neuropathy (OIN) is a severe painful condition that strongly affects the patient's quality of life and cannot be counteracted by the available drugs or adjuvants. Thus, several efforts are devoted to discovering substances that can revert or reduce OIN, including natural compounds. The carob tree, L.

View Article and Find Full Text PDF

Flavonoids are naturally occurring polyphenolic compounds known for their extensive range of biological activities. This review focuses on the inhibitory effects of flavonoids on acetylcholinesterase (AChE) and their potential as therapeutic agents for cognitive dysfunction. AChE, a serine hydrolase that plays a crucial role in cholinergic neurotransmission, is a key target in the treatment of cognitive impairments due to its function in acetylcholine hydrolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!