An antibacterial and antiviral powdered soft-drink base.

Trans R Soc Trop Med Hyg

Princess Margaret Children's Medical Research Foundation, Perth, Western Australia.

Published: April 1989

Soft-drink powdered mixtures have been developed which are bactericidal against a range of enteric bacteria and Staphylococcus aureus and which kill some enteric viruses in vitro. These mixtures could be used to help reduce risks of water-borne diarrhoeal illnesses, and as the basis for oral rehydration solutions, which would resist bacterial contamination after their preparation, to treat patients with diarrhoeal dehydration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0035-9203(88)90170-8DOI Listing

Publication Analysis

Top Keywords

antibacterial antiviral
4
antiviral powdered
4
powdered soft-drink
4
soft-drink base
4
base soft-drink
4
soft-drink powdered
4
powdered mixtures
4
mixtures developed
4
developed bactericidal
4
bactericidal range
4

Similar Publications

Bacterial and viral RNA polymerases are promising targets for the development of new transcription inhibitors. One of the potential blockers of RNA synthesis is 7,8-dihydro-8-oxo-1,-ethenoadenine (oxo-εA), a synthetic compound that combines two adenine modifications: 8-oxoadenine and 1,-ethenoadenine. In this study, we synthesized oxo-εA triphosphate (oxo-εATP) and showed that it could be incorporated by the RNA-dependent RNA polymerase of SARS-CoV-2 into synthesized RNA opposite template residues A and G in the presence of Mn ions.

View Article and Find Full Text PDF

Second-generation integrase strand transfer inhibitors (INSTIs) are strongly recommended for people living with HIV-1 (PLWH). The emergence of resistance to second-generation INSTIs has been infrequent and has not yet been a major issue in high-income countries. However, the delayed rollouts of these INSTIs in low- to middle-income countries during the COVID-19 pandemic combined with increased transmission of drug-resistant mutants worldwide are leading to an increase in INSTI resistance.

View Article and Find Full Text PDF

Optimization of SARS-CoV-2 M Inhibitors by a Structure-Based Multilevel Virtual Screening Method.

Int J Mol Sci

January 2025

Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China.

With the aim of developing novel anti-SARS-CoV-2 drugs to address the ongoing evolution and emergence of drug-resistant strains, the reported SARS-CoV-2 M inhibitor was selected as a lead to find novel, highly potent, and broad-spectrum inhibitors. Using a fragment-based multilevel virtual screening strategy, 15 hit compounds were identified and subsequently synthesized. Among them, (IC = 1.

View Article and Find Full Text PDF

Aquatic Invertebrate Antimicrobial Peptides in the Fight Against Aquaculture Pathogens.

Microorganisms

January 2025

CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.

The intensification of aquaculture has escalated disease outbreaks and overuse of antibiotics, driving the global antimicrobial resistance (AMR) crisis. Antimicrobial peptides (AMPs) provide a promising alternative due to their rapid, broad-spectrum activity, low AMR risk, and additional bioactivities, including immunomodulatory, anticancer, and antifouling properties. AMPs derived from aquatic invertebrates, particularly marine-derived, are well-suited for aquaculture, offering enhanced stability in high-salinity environments.

View Article and Find Full Text PDF

, a traditional Chinese herbal medicine, possesses antibacterial, antiviral, and anti-inflammatory properties. The aim of this experiment was to investigate the therapeutic effect of extraction (AOE) in treating colitis induced by dextran sulfate sodium (DSS) in mice. The in vitro antioxidant activity of AOE was evaluated by assessing its iron reduction capacity and scavenging capacity towards 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radicals (·OH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!