During normal T cell development in the thymus, αβ TCRs signal immature thymocytes to differentiate into mature T cells by binding to peptide-MHC ligands together with CD4/CD8 coreceptors. Conversely, in MHC and CD4/CD8 coreceptor-deficient mice, the thymus generates mature T cells expressing MHC-independent TCRs that recognize native conformational epitopes rather than linear antigenic-peptides presented by MHC. To date, no structural information of MHC-independent TCRs is available, and their structural recognition of non-MHC ligand remains unknown. To our knowledge in this study, we determined the first structures of two murine MHC-independent TCRs (A11 and B12A) that bind with high nanomolar affinities to mouse adhesion receptor CD155. Solution binding demonstrated the Vαβ-domain is responsible for MHC-independent B12A recognition of its ligand. Analysis of A11 and B12A sequences against various MHC-restricted and -independent TCR sequence repertoires showed that individual V-genes of A11 and B12A did not exhibit preference against MHC-restriction. Likewise, CDR3 alone did not discriminate against MHC binding, suggesting VDJ recombination together with Vα/Vβ pairing determine their MHC-independent specificity for CD155. The structures of A11 and B12A TCR are nearly identical to those of MHC-restricted TCR, including the conformations of CDR1 and 2. Mutational analysis, together with negative-staining electron microscopy images, showed that the CDR regions of A11 and B12A recognized epitopes on D1 domain of CD155, a region also involved in CD155 binding to poliovirus and Tactile in human. Taken together, MHC-independent TCRs adopt canonical TCR structures to recognize native Ags, highlighting the importance of thymic selection in determining TCR ligand specificity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7390066PMC
http://dx.doi.org/10.4049/jimmunol.1901084DOI Listing

Publication Analysis

Top Keywords

mhc-independent tcrs
20
a11 b12a
20
mature cells
8
recognize native
8
tcrs
6
mhc-independent
6
b12a
6
cd155
5
a11
5
tcr
5

Similar Publications

Graft-versus-Host Disease Modulation by Innate T Cells.

Int J Mol Sci

February 2023

Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.

Allogeneic cell therapies, defined by genetically mismatched transplantation, have the potential to become a cost-effective solution for cell-based cancer immunotherapy. However, this type of therapy is often accompanied by the development of graft-versus-host disease (GvHD), induced by the mismatched major histocompatibility complex (MHC) between healthy donors and recipients, leading to severe complications and death. To address this issue and increase the potential for allogeneic cell therapies in clinical practice, minimizing GvHD is a crucial challenge.

View Article and Find Full Text PDF

The function of γδ T cells in humoral immune responses.

Inflamm Res

April 2023

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.

Purpose: The purpose of this review is to discuss the role of γδ T cells played in humoral immune responses.

Background: The γδ T cell receptor (γδ TCR) recognizes antigens, including haptens and proteins, in an MHC-independent manner. The recognition of these antigens by γδ TCRs crosses antigen recognition by the B cell receptors (BCRs), suggesting that γδ T cells may be involved in the process of antigen recognition and activation of B cells.

View Article and Find Full Text PDF

MHC-independent αβT cells: Lessons learned about thymic selection and MHC-restriction.

Front Immunol

August 2022

Lymphocyte Development Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.

Understanding the generation of an MHC-restricted T cell repertoire is the cornerstone of modern T cell immunology. The unique ability of αβT cells to only recognize peptide antigens presented by MHC molecules but not conformational antigens is referred to as MHC restriction. How MHC restriction is imposed on a very large T cell receptor (TCR) repertoire is still heavily debated.

View Article and Find Full Text PDF

Engineering γδ T Cells: Recognizing and Activating on Their Own Way.

Front Immunol

May 2022

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Adoptive cell therapy (ACT) with engineered T cells has emerged as a promising strategy for the treatment of malignant tumors. Among them, there is great interest in engineered γδ T cells for ACT. With both adaptive and innate immune characteristics, γδ T cells can be activated by γδ TCRs to recognize antigens in a MHC-independent manner, or by NK receptors to recognize stress-induced molecules.

View Article and Find Full Text PDF

The epidermis of mouse skin is usually populated by dendritic epidermal T cells (γδDETC) expressing an invariant Vγ5Vδ1 TCR. In Tcrd mice, skin-resident γδDETC are replaced by αβDETC carrying polyclonal αβ TCRs. Although they exhibit a dendritic morphology, αβDETC were reported to be less functional than genuine γδDETC, likely because their TCR is unable to interact with the original TCR ligands of γδDETC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!