Background: Cardiac dysfunction is increasingly recognized in patients with liver cirrhosis. Nevertheless, the presence or absence of structural alterations such as diffuse myocardial fibrosis remains unclear. We aimed to investigate myocardial structural changes in cirrhosis, and explore left ventricular (LV) structural and functional changes induced by liver transplantation.
Methods: This study included 33 cirrhosis patients listed for transplantation and 20 healthy controls. Patients underwent speckle-tracking echocardiography and cardiovascular magnetic resonance (CMR) with extracellular volume fraction (ECV) quantification at baseline (n = 33) and 1 year after transplantation (n = 19).
Results: CMR-based LV ejection fraction (CMR) and echocardiographic LV global longitudinal strain (LV-GLS) demonstrated hyper-contractile LV in cirrhosis patients (CMR: 67.8 ± 6.9% in cirrhosis vs 63.4 ± 6.4% in healthy controls, P = 0.027; echocardiographic GLS: - 24.2 ± 2.7% in cirrhosis vs - 18.6 ± 2.2% in healthy controls, P < 0.001). No significant differences in LV size, wall thickness, mass index, and diastolic function between cirrhosis patients and healthy controls were seen (all P > 0.1). Only one of the cirrhosis patients showed late gadolinium enhancement. However, cirrhosis patients showed a higher ECV (31.6 ± 5.1% vs 25.4 ± 1.9%, P < 0.001) than healthy controls. ECV showed a positive correlation with Child-Pugh score (r = 0.564, P = 0.001). Electrocardiogram-based corrected QT interval was prolonged in cirrhosis (P < 0.001). One-year post-transplantation, echocardiographic LV-GLS (from - 24.9 ± 2.4% to - 20.6 ± 3.4%, P < 0.001) and ECV (from 30.9 ± 4.5% to 25.4 ± 2.6%, P = 0.001) moved to the normal ranges. Corrected QT interval decreased after transplantation (from 475 ± 41 to 429 ± 30 msec, P = 0.001).
Conclusions: Myocardial extracellular volume expansion with augmented resting LV systolic function was characteristic of cirrhotic cardiomyopathy, which normalizes 1-year post-transplantation. Thus, myocardial extracellular expansion represents a structural component of myocardial changes in cirrhosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178724 | PMC |
http://dx.doi.org/10.1186/s12968-020-00622-2 | DOI Listing |
Nat Rev Gastroenterol Hepatol
January 2025
Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Ministerio de Sanidad, Madrid, Spain.
Two main stages are differentiated in patients with advanced chronic liver disease (ACLD), one compensated (cACLD) with an excellent prognosis, and the other decompensated (dACLD), defined by the appearance of complications (ascites, variceal bleeding and hepatic encephalopathy) and associated with high mortality. Preventing the progression to dACLD might dramatically improve prognosis and reduce the burden of care associated with ACLD. Portal hypertension is a major driver of the transition from cACLD to dACLD, and a portal pressure of ≥10 mmHg defines clinically significant portal hypertension (CSPH) as the threshold from which decompensating events may occur.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China.
Metabolic dysfunction-associated steatotic liver disease (MASLD) covers a broad spectrum of profile from simple fatty liver, evolving to metabolic dysfunction-associated steatohepatitis (MASH), to hepatic fibrosis, further progressing to cirrhosis and hepatocellular carcinoma (HCC). MASLD has become a prevalent disease with 25% in average over the world. MASH is an active stage, and requires pharmacological intervention when there is necroptotic damage with fibrotic progression.
View Article and Find Full Text PDFNat Med
January 2025
Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA.
No therapy has been shown to reduce the risk of major adverse liver outcomes (MALO) in patients with cirrhosis due to metabolic dysfunction-associated steatohepatitis (MASH). The Surgical Procedures Eliminate Compensated Cirrhosis In Advancing Long-term (SPECCIAL) observational study compared the effects of metabolic surgery and nonsurgical treatment in patients with obesity and compensated histologically proven MASH-related cirrhosis. Using a doubly robust estimation methodology to balance key baseline characteristics between groups, the time-to-incident MALO was compared between 62 patients (68% female) who underwent metabolic surgery and 106 nonsurgical controls (71% female), with a mean follow-up of 10.
View Article and Find Full Text PDFSci Rep
January 2025
Renal Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo, 781, São Paulo, SP, 04039-032, Brazil.
Partial stenosis of the renal artery causes renovascular hypertension (RVH) and is accompanied by chronic renal ischemia, resulting in irreversible kidney damage. Revascularization constitutes the most efficient therapy for normalizing blood pressure (BP) and has significant benefits for renal function; however, the tissue damage caused by chronic hypoxia is not fully reversed. Mesenchymal stem cells (MSCs) have produced discrete results in minimizing RVH and renal tissue and functional improvements since the obstruction persists.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
Renal fibrosis is widely recognized as the ultimate outcome of many chronic kidney diseases. The process of epithelial-mesenchymal transition (EMT) plays a critical role in the progression of fibrosis following renal injury. UHRF1, as a critical epigenetic regulator, may play an essential role in the pathogenesis and progression of renal fibrosis and EMT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!