Context: Kinesiology tape (KT) is a therapeutic intervention used to treat different musculoskeletal conditions and to enhance sports performance. The evidence is inconclusive, with researchers attributing the variable outcomes to different manufactured KT used in the research. Researchers have begun to measure and document the mechanical properties of different brands, using machines versus professionals. This prevents a clear translation to clinical practice, as it may be difficult to reproduce outcomes. There is a need to measure the mechanical properties of KT using more clinically relevant methodology.

Objective: The purpose was to document a clinically relevant method of measuring the mechanical properties of 2 different types of precut RockTape® tape at common elongation lengths and to establish the methodology for future validation research on this testing method.

Design: Controlled laboratory study.

Setting: University laboratory.

Participants: One researcher conducted all measurements.

Procedures: Each tape was measured at 3 elongation lengths with a force gauge.

Main Outcome Measures: Force, stress, and Young modulus.

Results: The RockTape® 2 and RockTape® 3 elongation force were 25% = 2.27 (0.21) and 2.12 (0.26) N, 50% = 6.51 (0.27) and 5.93 (0.20) N, and 75% = 30.13 (0.63) and 21.23 (0.41) N. The stress values for the RockTape® 2 and RockTape® 3 were 25% = 0.88 (0.05) and 0.82 (0.03) kPa, 50% = 2.52 (0.03) and 2.29 (0.01) kPa, and 75% = 11.67 (0.04) and 8.23 (0.02) kPa. The Young modulus values for the RockTape® 2 and RockTape® 3 were 25% = 3.51 (0.00) and 3.29 (0.00) kPa, 50% = 5.04 (0.00) and 4.60 (0.00) kPa, and 75% = 15.57 (0.00) and 10.96 (0.00) kPa.

Conclusion: This investigation documented a novel method of measuring the mechanical properties of 2 types of RockTape® KT. Future research should attempt to validate these testing methods.

Download full-text PDF

Source
http://dx.doi.org/10.1123/jsr.2019-0261DOI Listing

Publication Analysis

Top Keywords

mechanical properties
20
clinically relevant
12
elongation lengths
12
rocktape® rocktape®
12
rocktape®
9
relevant method
8
kinesiology tape
8
method measuring
8
measuring mechanical
8
properties types
8

Similar Publications

The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.

View Article and Find Full Text PDF

Mechanical Wear of Degraded Articular Cartilage.

Ann Biomed Eng

January 2025

School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Purpose: To evaluate the mechanical wear of cartilage with different types of degradation.

Methods: Bovine osteochondral explants were treated with interleukin-1β (IL-1β) to mimic inflammatory conditions, with chondroitinase ABC (ChABC) to specifically remove glycosaminoglycans (GAGs), or with collagenase to degrade the collagen network during 5 days of culture. Viscoelastic properties of cartilage were characterized via indentation.

View Article and Find Full Text PDF

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

The best treatment method for reverse obliquity intertrochanteric fractures (ROIFs) is still under debate. Our team designed the modified proximal femoral nail (MPFN) specially for treating such fractures. The objective of this research was to introduce the MPFN device and compare the biomechanical properties with Proximal Femoral Nail Antirotation (PFNA) and InterTAN nail via finite element modelling.

View Article and Find Full Text PDF

Magnetic nanoparticles of Nd2Fe14B prepared by ethanol-assisted wet ball milling technique.

Sci Rep

January 2025

Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!