Diabetic cardiomyopathy (DCM) accounts for increasing deaths of diabetic patients, and effective therapeutic targets are urgently needed. Myocardial lipotoxicity, which is caused by cardiac non-oxidative metabolic fatty acids and cardiotoxic fatty acid metabolites accumulation, has gained more attention to explain the increasing prevalence of DCM. However, whether mammalian Ste20-like kinase 1 (Mst1) plays a role in lipotoxicity in type 2 diabetes-induced cardiomyopathy has not yet been illustrated. Here, we found that Mst1 expression was elevated transcriptionally in the hearts of type 2 diabetes mellitus mice and palmitic acid-treated neonatal rat ventricular myocytes. Adeno-associated virus 9 (AAV9)-mediated Mst1 silencing in db/db mouse hearts significantly alleviated cardiac dysfunction and fibrosis. Notably, Mst1 knockdown in db/db mouse hearts decreased lipotoxic apoptosis and inflammatory response. Mst1 knockdown exerted protective effects through inactivation of MAPK/ERK kinase kinase 1 (MEKK1)/c-Jun N-terminal kinase (JNK) signaling pathway. Moreover, lipotoxicity induced Mst1 expression through promoting the binding of forkhead box O3 (FoxO3) and Mst1 promoter. Conclusively, we elucidated for the first time that Mst1 expression is regulated by FOXO3 under lipotoxicity stimulation and downregulation of Mst1 protects db/db mice from lipotoxic cardiac injury through MEKK1/JNK signaling inhibition, indicating that Mst1 abrogation may be a potential treatment strategy for DCM in type 2 diabetic patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2020.165806DOI Listing

Publication Analysis

Top Keywords

mst1 knockdown
12
mst1 expression
12
mst1
11
diabetic cardiomyopathy
8
db/db mice
8
diabetic patients
8
db/db mouse
8
mouse hearts
8
lipotoxicity
5
knockdown alleviates
4

Similar Publications

As a pathological feature of diabetic kidney disease (DKD), dysregulated glomerular filtration barrier function could lead to the increased levels of proteinuria. The integrity of tight junctions (TJs) of glomerular endothelial cells (GECs) is a guarantee of physiological function of glomerular filtration barrier. Mammalian sterile 20-like kinase (MST1) is a key regulatory protein in the blood-brain barrier (BBB), and it regulates the expression of TJs-related proteins in cerebral vascular endothelial cells.

View Article and Find Full Text PDF

Centromere protein K (CENPK) is a newly identified malignancy-related gene that exhibits differential expression in various cancers and plays a crucial role in carcinogenesis. However, it remains uncertain whether CENPK is involved in clear cell renal cell carcinoma (ccRCC). This work aimed to unveil the expression, clinical significance, biological functions, and regulatory mechanisms of CENPK in ccRCC.

View Article and Find Full Text PDF

CAFs-derived lactate enhances the cancer stemness through inhibiting the MST1 ubiquitination degradation in OSCC.

Cell Biosci

November 2024

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Background: Cancer-associated fibroblasts (CAFs), a predominant stromal cell type in the tumor microenvironment, significantly affect the progression of oral squamous cell carcinoma (OSCC).

Results: The specific mechanisms through which CAFs influence the cancer stem cell phenotype in OSCC are not fully understood. This study explored the effects of lactic acid produced by CAFs on the cancer stem cells (CSCs) phenotype of OSCC cells.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a prevalent irreversible neurodegenerative condition marked by gradual cognitive deterioration and neuronal loss. The mammalian Ste20-like kinase (MST1)-Hippo pathway is pivotal in regulating cell apoptosis, immune response, mitochondrial function, and oxidative stress. However, the association between MST1 and mitochondrial function in AD remains unknown.

View Article and Find Full Text PDF

Neuregulin-1 reduces Doxorubicin-induced cardiotoxicity by upregulating YAP to inhibit senescence.

Int Immunopharmacol

December 2024

Department of Cardiology, The Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun, Jilin Province 130041, China. Electronic address:

The cardiotoxicity of Doxorubicin (Dox) limits its clinical application, creating an urgent need to investigate its underlying mechanism and develop effective therapies. Senescence plays an important role in Dox-induced cardiotoxicity (DIC). Recently, Neuregulin-1 (NRG1) was found to regulate Yes-associated protein (YAP), which was reported to inhibit senescence, suggesting that NRG1 might be used to treat DIC by inhibiting senescence through YAP regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!