Optical polarimetry has been used to characterize muscle tissue samples of chicken, beef and mutton, exhibiting statistically significant (p < 0.01) differences in total depolarization and retardance of three tissue groups. Herein, the total depolarization and retardance were utilized to differentiate and classify the three tissue groups. Specifically, the Bagging classification algorithm was employed for this multi-class differentiation. The performance of the optical polarimetry in tandem with the Bagging model for machine-assisted classification of the three tissue groups was assessed in terms of a comprehensive set of evaluation metrics. The Bagging model correctly classified 47/48, 19/20 and 15/18, whereas the sensitivity (Sn = 97.9 %, 82.6 %, 100 %), specificity (Sp = 97.4 %, 98.4 %, 95.8 %), positive predictive values (PPV = 0.97, 0.95, 0.83) and negative predictive values (NPV = 0.97, 0.94, 1.0) were calculated for the chicken, beef and mutton tissue samples, respectively. This automatic classification of the three tissue samples indicates a novel application of the optical polarimetry in the meat industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pdpdt.2020.101779 | DOI Listing |
Biomater Adv
January 2025
Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
Alternative meat production technologies offer the potential to alleviate many of the ethical, environmental, and public health concerns associated with conventional meat production. Cultured meat produced using cell culture technology promises to become a viable alternative to animal-raised meat for the future of the food industry. The process of cultured meat production relies on cell sources harvested from livestock such as bovine, swine, and chicken.
View Article and Find Full Text PDFNutrients
January 2025
University of Life Sciences "King Mihai I", 300645 Timisoara, Romania.
Background/objectives: Agricultural systems face increasing global pressure to address sustainability challenges, particularly regarding land use and environmental protection. In Romania, where traditional diets are heavily dependent on animal-based products, optimizing land use is critical. This study investigates the potential of plant-based diets to reduce agricultural land use, examining scenarios of partial and complete replacement of animal protein with plant protein sources (soy, peas, and potatoes).
View Article and Find Full Text PDFFood Res Int
January 2025
Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea. Electronic address:
This study investigated the survival of human rotavirus (HRV) on fresh beef, chicken, and lettuce stored at various temperatures, as well as the effect of UV-C exposure on HRV viability on these food surfaces. At 20 °C, the survival rate of three HRV strains (WA, 89-12C2, and DS-1) on beef, chicken, and lettuce decreased within 3 days, with the most significant reduction observed on beef. When stored at 4 °C, a significant reduction in HRV viability was observed by day 7, with the greatest decrease observed on beef, followed by chicken and lettuce.
View Article and Find Full Text PDFMicroorganisms
November 2024
Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
The significance of as a foodborne pathogen is increasingly acknowledged, but the assessment of its occurrence and transmission remains challenging due to the lack of validation of selective isolation, detection, and identification methods. The aim of the present study was to examine its presence on various meat samples at the retail level in order to assess a potential foodborne transmission and its occurrence in clinical stool samples. First, the evaluation and selection of a selective enrichment broth and isolation medium, combined with an optimized identification by MALDI-TOF MS, as well as a suitable DNA extraction method and a PCR-based detection strategy were developed.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
Assay Division II, National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo 185-8511, Japan.
Evaluating antimicrobial use (AMU) is essential in the investigation and implementation of antimicrobial resistance (AMR) prevention measures. Here, we examined AMU using an index (mg/kg biomass) that considers the antimicrobial sales volume and livestock biomass in Japan from 2011 to 2022. Antimicrobial sales volumes were obtained from JVARM data, and biomass data were obtained from reliable statistics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!