Activating mutations in the canonical Wnt/β-catenin pathway are key drivers of hyperplasia, the gateway for tumor development. In a wide range of tissues, this occurs primarily through enhanced effects on cellular proliferation. Whether additional mechanisms contribute to β-catenin-driven hyperplasia remains unknown. The adrenal cortex is an ideal system in which to explore this question, as it undergoes hyperplasia following somatic β-catenin gain-of-function (βcat-GOF) mutations. Targeting βcat-GOF to zona Glomerulosa (zG) cells leads to a progressive hyperplastic expansion in the absence of increased proliferation. Instead, we find that hyperplasia results from a functional block in the ability of zG cells to transdifferentiate into zona Fasciculata (zF) cells. Mechanistically, zG cells demonstrate an upregulation of Pde2a, an inhibitor of zF-specific cAMP/PKA signaling. Hyperplasia is further exacerbated by trophic factor stimulation leading to organomegaly. Together, these data indicate that β-catenin drives adrenal hyperplasia through both proliferation-dependent and -independent mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7281829 | PMC |
http://dx.doi.org/10.1016/j.celrep.2020.107524 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!