A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting Inpatient Falls Using Natural Language Processing of Nursing Records Obtained From Japanese Electronic Medical Records: Case-Control Study. | LitMetric

Background: Falls in hospitals are the most common risk factor that affects the safety of inpatients and can result in severe harm. Therefore, preventing falls is one of the most important areas of risk management for health care organizations. However, existing methods for predicting falls are laborious and costly.

Objective: The objective of this study is to verify whether hospital inpatient falls can be predicted through the analysis of a single input-unstructured nursing records obtained from Japanese electronic medical records (EMRs)-using a natural language processing (NLP) algorithm and machine learning.

Methods: The nursing records of 335 fallers and 408 nonfallers for a 12-month period were extracted from the EMRs of an acute care hospital and randomly divided into a learning data set and test data set. The former data set was subjected to NLP and machine learning to extract morphemes that contributed to separating fallers from nonfallers to construct a model for predicting falls. Then, the latter data set was used to determine the predictive value of the model using receiver operating characteristic (ROC) analysis.

Results: The prediction of falls using the test data set showed high accuracy, with an area under the ROC curve, sensitivity, specificity, and odds ratio of mean 0.834 (SD 0.005), mean 0.769 (SD 0.013), mean 0.785 (SD 0.020), and mean 12.27 (SD 1.11) for five independent experiments, respectively. The morphemes incorporated into the final model included many words closely related to known risk factors for falls, such as the use of psychotropic drugs, state of consciousness, and mobility, thereby demonstrating that an NLP algorithm combined with machine learning can effectively extract risk factors for falls from nursing records.

Conclusions: We successfully established that falls among hospital inpatients can be predicted by analyzing nursing records using an NLP algorithm and machine learning. Therefore, it may be possible to develop a fall risk monitoring system that analyzes nursing records daily and alerts health care professionals when the fall risk of an inpatient is increased.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203618PMC
http://dx.doi.org/10.2196/16970DOI Listing

Publication Analysis

Top Keywords

nursing records
20
data set
20
nlp algorithm
12
machine learning
12
falls
10
inpatient falls
8
natural language
8
language processing
8
records japanese
8
japanese electronic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!