Due to regulations on phthalates, non-phthalate plasticizers (NPPs) are now used as an alternative. Limited studies have been conducted on the occurrence and distribution of NPPs. In this study, sediment samples were collected from 50 locations along the Korean coast to assess the occurrence, distribution, sources, and ecological risks of phthalates and NPPs. Phthalates and NPPs were detected in all sediments, indicating ubiquitous contamination of the coastal environment. Di(2-ethylhexyl)phthalate (DEHP) and di(2-ethylhexyl)terephthalate (DEHT) were dominant, suggesting that DEHT could be an emerging contaminant of concern. The highest concentrations of phthalates and NPPs were found in sediment samples from harbors, implying they are contaminated hotspots. Sedimentary organic carbon was a major factor governing the distribution of phthalates and NPPs. Significant correlations were observed among phthalates and NPPs, suggesting similar sources and geochemical behavior. DEHP concentration exceeded threshold values, indicating potential health risks to benthic organisms in sediments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2020.111119 | DOI Listing |
Sci Total Environ
December 2024
Department of Physical Science, Earth and Environment, University of Siena, Siena, Italy; National Biodiversity Future Center, Palermo, Italy.
Plastic materials contain additives such as plasticizers and flame retardants, which are not covalently bound to plastic polymers and can therefore be unintentionally released into the marine environment. This study investigated three families of compounds, phthalates (PAEs), organophosphate esters (OPEs), and non-phthalate plasticizers (NPPs) currently used as plastic additives, in 48 muscle samples of bogue (Boops boops), European hake (Merluccius merluccius), red mullet (Mullus barbatus), and European pilchard (Sardina pilchardus) sampled in the Central Adriatic and the Ligurian Seas. The additional goal of this study is to assess the potential risk to human health from fish consumption with the objective of determining whether the detected levels might potentially pose a concern.
View Article and Find Full Text PDFSci Total Environ
March 2024
Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, ceiA3, E-04120 Almeria, Spain. Electronic address:
Non-phthalate plasticizers (NPPs) are a suitable alternative to phthalates, which are harmful compounds for human, animal health, and the environment. In this study, 28 commercial non-phthalate plasticizers (NPPs) from different families, including adipates, citrates, phosphates, sebacates, trimellitates, benzoates and cyclohexanoates, were determined. Two novel methods for determining these alternative compounds in soil were developed using gas chromatography coupled to high-resolution mass spectrometry (GC-HRMS-Q-Orbitrap) and liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS-Q-Orbitrap).
View Article and Find Full Text PDFMar Pollut Bull
February 2024
Graduate School of Maritime Sciences, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan.
NPPs (Non-phthalate plasticizers) are used as alternative plasticizers to phthalate esters, but there is limited knowledge on environmental residues, and they have not been reported in Japan. A method to analyze NPPs in seawater using solid-phase extraction was developed, and the residual burden of Diisobutyl adipate (DIBA), Acetyl tributyl citrate (ATBC), Di-(2-ethylhexyl) adipate (DEHA), Di-(2-ethylhexyl) sebacate (DEHS) and Trioctyl trimellitate (TOTM) in seawater and sediment from the Osaka Bay was measured. Using an Oasis Max column and acetone as the eluting solvent, the recovery of the target substances in seawater is >68 %.
View Article and Find Full Text PDFChemosphere
September 2023
University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, 98100, Messina, Italy. Electronic address:
Due to their uncontrolled use, plastics has become an environmental concern, not only for their varying dimension but also for the potential release of substances such as phthalates (PAEs) and non-phthalates (NPPs) into the water. Phthalates are the most common plasticizers of concern, but non-phthalate plasticizers such as di (2-ethylhexyl) terephthalate (DEHT) have also been lately found in the marine environment. Mytilus galloprovincialis is a well-known bioindicator of aquatic environments due to its ability to accumulate a wide variety of xenobiotics, including plasticizers.
View Article and Find Full Text PDFEnviron Toxicol Pharmacol
June 2023
Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, Messina, Italy. Electronic address:
The plastic accumulation and its degradation into microplastics is an environmental issue not only for their ubiquity, but also for the release of intrinsic chemicals, such as phthalates (PAEs), non-phthalate plasticizers (NPPs), and bisphenols (BPs), which may reach body organs and tissues, and act as endocrine disruptors. Monitoring plastic additives in biological matrices, such as blood, may help in deriving relationships between human exposure and health outcomes. In this work, the profile of PAEs, NPPs and BPs was determined in Sicilian women's blood with different ages (20-60 years) and interpreted by chemometrics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!