Grey mould is one of the most determinative factors of lily growth and plays a major role in limiting lily productivity. MicroRNA159 (miR159) is a highly conserved microRNA in plants, and participates in the regulation of plant development and stress responses. Our previous studies revealed that lre-miR159a participates in the response of Lilium regale to Botrytis elliptica according to deep sequencing analyses; however, the response mechanism remains unknown. Here, lre-miR159a and its target LrGAMYB gene were isolated from L. regale. Transgenic Arabidopsis overexpressing lre-MIR159a exhibited larger leaves and smaller necrotic spots on inoculation with Botrytis than those of wild-type and overexpressing LrGAMYB plants. The lre-MIR159a overexpression also led to repressed expression of two targets of miR159, AtMYB33 and AtMYB65, and enhanced accumulation of hormone-related genes, including AtPR1, AtPR2, AtNPR1, AtPDF1.2, and AtLOX for both the jasmonic acid and salicylic acid pathways. Moreover, lower levels of H O and were observed in lre-MIR159a transgenic Arabidopsis, which reduced the damage from reactive oxygen species accumulation. Taken together, these results indicate that lre-miR159a positively regulates resistance to grey mould by repressing the expression of its target LrGAMYB gene and activating a defence response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214475 | PMC |
http://dx.doi.org/10.1111/mpp.12923 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!