A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionh5ptnqt2524sd9d66fdba1l3g156c49p): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A cholecystic extracellular matrix-based hybrid hydrogel for skeletal muscle tissue engineering. | LitMetric

AI Article Synopsis

  • This study explores the development of hybrid hydrogels for tissue engineering by combining extracellular matrix (ECM) from porcine cholecyst with synthetic poly(ethylene glycol) diacrylate (PEGDA) at various concentrations.
  • The combination of C-ECM and PEGDA was achieved through chemical processes, resulting in hydrogels with improved mechanical properties suitable for skeletal muscle tissues.
  • Evaluations revealed that certain PEGDA concentrations (0.2% and 0.5%) were biocompatible, promoting cell growth and showing potential for future tissue engineering applications.

Article Abstract

Tailoring the properties of extracellular matrix (ECM) based hydrogels by conjugating with synthetic polymers is an emerging method for designing hybridhydrogels for a wide range of tissue engineering applications. In this study, poly(ethylene glycol) diacrylate (PEGDA), a synthetic polymer at variable concentrations (ranging from 0.2 to 2% wt/vol) was conjugated with porcine cholecyst derived ECM (C-ECM) (1% wt/vol) and prepared a biosynthetic hydrogel having enhanced physico-mechanical properties, as required for skeletal muscle tissue engineering. The C-ECM was functionalized with acrylate groups using activated N-hydroxysuccinimide ester-based chemistry and then conjugated with PEGDA via free-radical polymerization in presence of ammonium persulfate and ascorbic acid. The physicochemical characteristics of the hydrogels were evaluated by Fourier transform infrared spectroscopy and environmental scanning electron microscopy. Further, the hydrogel properties were studied by evaluating rheology, swelling, gelation time, percentage gel fraction, in vitro degradation, and mechanical strength. Biocompatibility of the gel formulations were assessed using the C2C12 skeletal myoblast cells. The hydrogel formulations containing 0.2 and 0.5% wt/vol of PEGDA were non-cytotoxic and found suitable for growth and proliferation of skeletal myoblasts. The study demonstrated a method for modulating the properties of ECM hydrogels through conjugation with bio-inert polymers for skeletal muscle tissue engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.36955DOI Listing

Publication Analysis

Top Keywords

tissue engineering
16
skeletal muscle
12
muscle tissue
12
engineering applications
8
skeletal
5
cholecystic extracellular
4
extracellular matrix-based
4
matrix-based hybrid
4
hydrogel
4
hybrid hydrogel
4

Similar Publications

Macrophage efferocytosis (clearance of apoptotic cells) is crucial for tissue homeostasis and wound repair, where macrophages secrete factors that promote resolution of inflammation and regenerative signalling. This study examined the role of efferocytic macrophage-associated CCL2 secretion, its influence on mesenchymal stem/progenitor cell (MSPC) chemotaxis, and in vivo cell recruitment using Ccr2 (KO) mice with disrupted CCL2 receptor signalling in two regenerative models: ossicle implants and ulnar stress fractures. Single cell RNA sequencing and PCR validation indicated that efferocytosis of various apoptotic cells at bone injury sites (osteoblasts, pre-osteoblasts, MSPC) upregulated CCL2.

View Article and Find Full Text PDF

The oral microbiome plays an important role in human health, and an imbalance of the oral microbiome could lead to oral and systemic diseases. Orthodontic treatment is an effective method to correct malocclusion. However, it is associated with many adverse effects, including white spot lesions, caries, gingivitis, periodontitis, halitosis, and even some systematic diseases.

View Article and Find Full Text PDF

The SmARTR pipeline: A modular workflow for the cinematic rendering of 3D scientific imaging data.

iScience

December 2024

Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.

Advancements in noninvasive surface and internal imaging techniques, along with computational methods, have revolutionized 3D visualization of organismal morphology-enhancing research, medical anatomical analysis, and facilitating the preservation and digital archiving of scientific specimens. We introduce the SmARTR pipeline (Small Animal Realistic Three-dimensional Rendering), a comprehensive workflow integrating wet lab procedures, 3D data acquisition, and processing to produce photorealistic scientific data through 3D cinematic rendering. This versatile pipeline supports multiscale visualizations-from tissue-level to whole-organism details across diverse living organisms-and is adaptable to various imaging sources.

View Article and Find Full Text PDF

Prioritizing cases from a multi-institutional cohort for a dataset of pathologist annotations.

J Pathol Inform

January 2025

U.S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging, Diagnostics, and Software Reliability, Silver Spring, MD, United States of America.

Objective: With the increasing energy surrounding the development of artificial intelligence and machine learning (AI/ML) models, the use of the same external validation dataset by various developers allows for a direct comparison of model performance. Through our High Throughput Truthing project, we are creating a validation dataset for AI/ML models trained in the assessment of stromal tumor-infiltrating lymphocytes (sTILs) in triple negative breast cancer (TNBC).

Materials And Methods: We obtained clinical metadata for hematoxylin and eosin-stained glass slides and corresponding scanned whole slide images (WSIs) of TNBC core biopsies from two US academic medical centers.

View Article and Find Full Text PDF

A steadily increasing number of publications support the concept of physiological networks, and how cellular bioelectrical properties drive cell proliferation and cell synchronization. All cells, especially cancer cells, are known to possess characteristic electrical properties critical for physiological behavior, with major differences between normal and cancer cell counterparts. This opportunity can be explored as a novel treatment modality in Oncology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!