The role of alpha-synuclein as ferrireductase in neurodegeneration associated with Parkinson's disease.

J Neural Transm (Vienna)

University Hospital Wuerzburg, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy Margarete-Hoeppel-Platz 1, 97080, Wuerzburg, Germany.

Published: May 2020

Misfolding of the protein α-synuclein contributes to the formation of the intracellular inclusion, Lewy bodies. Although these structures are not exclusive to Parkinson's disease, nevertheless, their presence in the substantia nigra is mandatory for the pathological diagnosis of the disorder. Therefore, there must be a focus on the pathological mechanisms responsible for Lewy body generation. Recent studies have suggested that α-synuclein has the potential to operate as the enzyme ferrireductase. Perhaps in the early diseased state, overexpression or mutation of alpha-synuclein/ferrireductase invokes the dyshomeostasis of iron (III)/(II) only, while in advanced stages, accumulation of iron in particular areas of the brain follows. Furthermore, the loss of an important iron chelator, neuromelanin (due to dopaminergic neuronal death), may then result in the release and increase in unbound free iron. Iron could generate reactive oxygen species, which could instigate a torrent of cellular deleterious processes. In addition, loss of energy supply may contribute to the alteration in activity of enzymes involved in the mitochondrial respiratory chain and would, therefore, confer a vulnerability to the dopaminergic neurons in the substantia nigra. Therefore, the ferrireductase alpha-synuclein may hold the key for major pathology of Parkinson's disease. In conclusion, we hypothesize that environmentally or genetically overexpressed and/or mutated α-synuclein/ferrireductase causes iron dyshomeostasis without increase of free iron concentration in the early phases of PD, while increased iron concentration accompanied by iron dyshomeostasis is a marker for progressed PD stages. It is essential to elucidate these degenerative mechanisms, so as to provide effective therapeutic treatment to halt or delay the progression of the illness already in the early phase of PD. The development of iron chelators seems to be a reasonable approach.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00702-020-02192-0DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
12
iron
10
substantia nigra
8
free iron
8
iron dyshomeostasis
8
iron concentration
8
role alpha-synuclein
4
alpha-synuclein ferrireductase
4
ferrireductase neurodegeneration
4
neurodegeneration associated
4

Similar Publications

The neurological implications of micro- and nanoplastic exposure have recently come under scrutiny due to the environmental prevalence of these synthetic materials. Parkinson's disease (PD) is a major neurological disorder clinically characterized by intracellular Lewy-body inclusions and dopaminergic neuronal death. These pathological hallmarks of PD, according to Braak's hypothesis, are mediated by the afferent propagation of α synuclein (αS) via the enteric nervous system, or the so-called gut-brain axis.

View Article and Find Full Text PDF

Growing evidence indicates that type 2 diabetes (T2D) is associated with an increased risk of developing Parkinson's disease (PD) through shared disease mechanisms. Studies show that insulin resistance, which is the driving pathophysiological mechanism of T2D plays a major role in neurodegeneration by impairing neuronal functionality, metabolism and survival. To investigate insulin resistance caused pathological changes in the human midbrain, which could predispose a healthy midbrain to PD development, we exposed iPSC-derived human midbrain organoids from healthy individuals to either high insulin concentration, promoting insulin resistance, or to more physiological insulin concentration restoring insulin signalling function.

View Article and Find Full Text PDF

Peptide-based amyloid-beta aggregation inhibitors.

RSC Med Chem

December 2024

Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S. A. S. Nagar Punjab 160062 India

Aberrant protein misfolding and accumulation is considered to be a major pathological pillar of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Aggregation of amyloid-β (Aβ) peptide leads to the formation of toxic amyloid fibrils and is associated with cognitive dysfunction and memory loss in Alzheimer's disease (AD). Designing molecules that inhibit amyloid aggregation seems to be a rational approach to AD drug development.

View Article and Find Full Text PDF

The subthalamic nucleus is thought to play a crucial role in controlling impulsive actions. Networked among the basal ganglia and receiving input from several cortical areas, the subthalamic nucleus is well positioned to influence action selection when faced with competing and conflicting action outcomes. The purpose of this study was to test the dissociable roles of the dorsal and ventral aspects of the subthalamic nucleus during action conflict in patients with Parkinson's disease undergoing intraoperative neurophysiological recording and to explore a potential mechanism for this inhibitory control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!