By the end of 1980s, for the first time polyhydroxyalkanoate (PHA) copolymers with incorporated 4-hydroxybutyrate (4HB) units were produced in the bacterium (formally ) from structurally related carbon sources. After that, production of PHA copolymers composed of 3-hydroxybutyrate (3HB) and 4HB [P(3HB--4HB)] was demonstrated in diverse wild-type bacteria. The P4HB homopolymer, however, was hardly synthesized because existing bacterial metabolism on 4HB precursors also generate and incorporate 3HB. The resulting material assumes the properties of thermoplastics and elastomers depending on the 4HB fraction in the copolyester. Given the fact that P4HB is biodegradable and yield 4HB, which is a normal compound in the human body and proven to be biocompatible, P4HB has become a prospective material for medical applications, which is the only FDA approved PHA for medical applications since 2007. Different from other materials used in similar applications, high molecular weight P4HB cannot be produced via chemical synthesis. Thus, aiming at the commercial production of this type of PHA, genetic engineering was extensively applied resulting in various production strains, with the ability to convert unrelated carbon sources (e.g., sugars) to 4HB, and capable of producing homopolymeric P4HB. In 2001, Metabolix Inc. filed a patent concerning genetically modified and stable organisms, e.g., , producing P4HB and copolymers from inexpensive carbon sources. The patent is currently hold by Tepha Inc., the only worldwide producer of commercial P4HB. To date, numerous patents on various applications of P4HB in the medical field have been filed. This review will comprehensively cover the historical evolution and the most recent publications on P4HB biosynthesis, material properties, and industrial and medical applications. Finally, perspectives for the research and commercialization of P4HB will be presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147479PMC
http://dx.doi.org/10.3389/fbioe.2020.00257DOI Listing

Publication Analysis

Top Keywords

carbon sources
12
medical applications
12
p4hb
10
pha copolymers
8
4hb
6
applications
5
poly4-hydroxybutyrate current
4
current state
4
state perspectives
4
perspectives 1980s
4

Similar Publications

Nanoporous anodic alumina (nPAA) films formed on aluminum in lower aliphatic carboxylic acids exhibit blue self-coloring and characteristic properties such as photoluminescence (PL), electroluminescence, and electron spin resonance. The blue colors are seemingly originated from the adsorbed radicals incorporating into the oxide during the aluminum anodization. However, there is lack of reports revealing the detailed activation mechanism of the adatoms in the complexes.

View Article and Find Full Text PDF

Global oxygen minimum zones (OMZs) often reach hypoxia but seldom reach anoxia. Recently it was reported that Michaelis Menten constants (K) of oxidative enzymes are orders of magnitude higher than respiratory K values, and in the Hypoxic Barrier Hypothesis it was proposed that, in ecosystems experiencing falling oxygen, oxygenase enzyme activities become oxygen-limited long before respiration. We conducted a mesocosm experiment with a phytoplankton bloom as an organic carbon source and controlled dissolved oxygen (DO) concentrations in the dark to determine whether hypoxia slows carbon oxidation and oxygen decline.

View Article and Find Full Text PDF

The SiO/graphite composite is recognized as a promising anode material for lithium-ion batteries (LIBs), owing to the high theoretical capacity of SiO combined with the excellent stability of graphite. However, the inherent disadvantage of volume expansion in silicon-based anodes places significant challenges on the solid electrolyte interphase (SEI) and severely degrades the electrochemical performance. Rational formulation of electrolyte, including its additives, is crucial in accommodating and optimizing the composition of the SEI and enhancing the cell performance.

View Article and Find Full Text PDF

Biosynthesis of 10-Hydroxy-2-Decenoic Acid in Escherichia coli.

Metab Eng

January 2025

Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, CN; University of Chinese Academy of Sciences,Beijing, CN. Electronic address:

10-hydroxy-2-decenoic acid (10-HDA), a unique unsaturated fatty acid present in royal jelly, has attracted considerable interest due to its potential medical applications. However, its low concentration in royal jelly and complex conformational structure present challenges for large-scale production. In this study, we designed and constructed a de novo biosynthetic pathway for 10-HDA in Escherichia coli.

View Article and Find Full Text PDF

Impacts of different intensities of commercial Sphagnum moss extraction on CO fluxes in a northern Patagonia peatland.

Sci Total Environ

January 2025

Department of Forest Sciences, Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Temuco, Chile.

Peatlands are key ecosystems for global climate regulation because they provide the most efficient carbon sink on the planet. Despite this, they have been widely degraded by various anthropogenic disturbances, causing imbalances in their ecological functioning. A more recent type of disturbance corresponds to the commercial extraction of Sphagnum mosses, which has been carried out in temperate peatlands distributed in Australasia and Patagonia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!