Understanding SARS-CoV-2: Genetic Diversity, Transmission and Cure in Human.

Indian J Microbiol

Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440020 India.

Published: September 2020

As the SARS-CoV-2 virus race around the world across the different population, there needs to be a consolidated effort to understand the divergence of demographically distributed strains. The emerging trends in SARS-CoV-2 genome data show specific mutation and genetic diversity, which could provide the basis to develop a cocktail of vaccine and may also be used to develop the region-specific diagnostic tool, thus decreasing the chances of testing failures in fields. Since the transmission of SARS-CoV-2 is subject to the extent of human interaction, the insights from the correlation of genetic diversity with epidemiological parameter would give paramount information to tackle this transmission. Previously, studies have also correlated the epidemiological data with gut microbiome and its role in immunomodulation for maintaining health status, and such information could be generated from recovered individuals from different demographic regions. It will help in designing a probiotic-based diet for modulation of the gut microbiome, and that could be another plausible prophylactic treatment option. The genomics data suggest that a specific variant of SARS-CoV-2 gets enriched with the specific demographic region. Overall, demographic data suggests that host influences mutation and expression of the virus. Hence, the experiences from the clinical intervention for that region should be considered in control and treatment strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169643PMC
http://dx.doi.org/10.1007/s12088-020-00869-4DOI Listing

Publication Analysis

Top Keywords

genetic diversity
12
data specific
8
gut microbiome
8
understanding sars-cov-2
4
sars-cov-2 genetic
4
diversity transmission
4
transmission cure
4
cure human
4
sars-cov-2
4
human sars-cov-2
4

Similar Publications

Habitat fragmentation increases the risk of local extinction of small reptiles: A case study on Phrynocephalus przewalskii.

Ecotoxicol Environ Saf

January 2025

Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China. Electronic address:

Habitat fragmentation represents a multifaceted global conservation threat, exerting both direct and indirect effects on individual animals and communities. Reptiles, particularly smaller species with limited migratory abilities, are especially vulnerable to these changes. This study examines how small reptiles adapt their life history strategies in fragmented habitats and determines whether their responses are primarily due to phenotypic plasticity or genetic adaptation.

View Article and Find Full Text PDF

The elongation of tissues and organs is important for proper morphogenesis in animal development. In Drosophila ovaries, the elongation of egg chambers involves aligned Collagen IV fiber-like structures, a gradient of extracellular matrix stiffness and actin-based protrusion-driven collective cell migration, leading to the rotation of the egg chamber. Egg chamber elongation and rotation depend on the atypical cadherin Fat2.

View Article and Find Full Text PDF

Purpose: Precision medicine plays an important role in the treatment of patients with advanced melanoma. Despite its high incidence in White patients, advanced melanoma is rare in Asian countries, hampering prospective clinical trials targeting the Asian population. This retrospective study aimed to elucidate the real-world molecular diagnoses and outcomes of Japanese patients with melanoma using comprehensive genome profiling (CGP).

View Article and Find Full Text PDF

Background And Objectives: Breast cancers (BCs) of patients with paraneoplastic neurologic syndromes and anti-Yo antibodies (Yo-PNS) overexpress human epidermal growth factor receptor 2 (HER2) and display genetic alterations and overexpression of the Yo-onconeural antigens. They are infiltrated by an unusual proportion of B cells. We investigated whether these features were also observed in patients with PNS and anti-Ri antibodies (Ri-PNS).

View Article and Find Full Text PDF

Hereditary angioedema is an autosomal dominant disorder caused by defects in C1-esterase inhibitor (C1-INH), resulting in poorly controlled activation of the kallikrein-kinin system and bradykinin overproduction. C1-INH is a heavily glycosylated protein in the serine protease inhibitor (SERPIN) family, yet the role of these glycosylation sites remains unclear. To elucidate the functional impact of N-glycosylation in the SERPIN domain of C1-INH, we engineered four sets consisting of 26 variants at or near the N-linked sequon (NXS/T).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!