Mesenchymal stem cell-based therapy is a highly attractive strategy that promotes bone tissue regeneration. The aim of the present study was to evaluate the combination effect of muscle-derived mesenchymal stem cells (M-MSCs) and platelet-rich plasma (PRP) on bone repair capacity in rabbits with large humeral bone defect. Precise cylindrical bone defects of 10 mm diameter and 5 mm depth were established in rabbit humeral bones, which were unable to be repaired under natural conditions. The rabbits received treatment with M-MSCs/PRP gel, M-MSCs gel, or PRP gel, or no treatment. The bone tissue regeneration was evaluated at day 0-90 after surgery by HE morphological staining, Lane-Sandhu histopathological scoring, tetracycline detection, Gomori staining and micro-computed tomography. Beyond that, Transwell assay, CCK8 assay, Western blot analysis and ALP activity detection were performed in M-MSCs in vitro with or without PRP application to detect the molecular effects of PRP on M-MSCs. We found that the repair effect of M-MSCs group or PRP group was limited and the bone defects were not completely closed at post-operation 90 d. In contrast, M-MSCs/PRP group received obvious filling in the bone defects with a Lane-Sandhu evaluation score of 9. Tetracycline-labeled new bone area in M-MSCs/PRP group and new mineralized bone area were significantly larger than that in other groups. Micro-computed tomography result of M-MSCs/PRP group displayed complete recovery of humeral bone at post-operation 90 d. Further in vitro experiment revealed that PRP significantly induced migration, enhanced the growth, and promoted the expression of Cbfa-1 and Coll I in M-MSCs. In conclusion, PRP application significantly enhanced the regeneration capacity of M-MSCs in large bone defect via promoting the migration and proliferation of M-MSCs, and also inducing the osteogenic differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174361PMC
http://dx.doi.org/10.1038/s41598-020-63496-5DOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
12
bone
12
humeral bone
12
bone defect
12
bone defects
12
m-mscs/prp group
12
platelet-rich plasma
8
repair capacity
8
muscle-derived mesenchymal
8
stem cells
8

Similar Publications

Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.

Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.

View Article and Find Full Text PDF

Stem cells prevent long-term deterioration of renal function after renal artery revascularization in a renovascular hypertension model in rats.

Sci Rep

January 2025

Renal Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo, 781, São Paulo, SP, 04039-032, Brazil.

Partial stenosis of the renal artery causes renovascular hypertension (RVH) and is accompanied by chronic renal ischemia, resulting in irreversible kidney damage. Revascularization constitutes the most efficient therapy for normalizing blood pressure (BP) and has significant benefits for renal function; however, the tissue damage caused by chronic hypoxia is not fully reversed. Mesenchymal stem cells (MSCs) have produced discrete results in minimizing RVH and renal tissue and functional improvements since the obstruction persists.

View Article and Find Full Text PDF

The anti-inflammatory role of miR-23b-3p (miR-23b) is known in autoimmune diseases like multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis. However, its role in sepsis-related acute lung injury (ALI) and its effect on macrophages in ALI remain unexplored. This investigation aimed to evaluate miR-23b's therapeutic potential in macrophages in the context of ALI.

View Article and Find Full Text PDF

Gastric cancer mesenchymal stem cells upregulate PD-1 expression on the CD8 T cells by regulating the PI3K/AKT pathway.

Mol Immunol

January 2025

Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu 212001, China; Department of Oncology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China. Electronic address:

Gastric cancer mesenchymal stem cells (GC-MSCs) are a crucial component of the gastric cancer microenvironment, exerting a pivotal influence on the formation of a suppressive immune microenvironment and the progression of gastric cancer. In this study, we utilized GC-MSCs to co-culture peripheral blood mononuclear cells (PBMCs) obtained from both gastric cancer patients and healthy individuals in a proportionate manner by direct cell-to-cell contact. Our findings reveal that co-culture of GC-MSCs with PBMCs led to a notable reduction in CD8 T cells percentages and an increase in surface PD-1 expression levels on CD8 T cells.

View Article and Find Full Text PDF

Exploring the landscape of exosomes in heart failure: a bibliometric analysis.

Int J Surg

January 2025

Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Background: Exosomes, which carry bioactive RNAs, proteins, lipids, and metabolites, have emerged as novel diagnostic markers and therapeutic agents for heart failure (HF). This study aims to elucidate the trends, key contributors, and research hotspots of exosomes in HF.

Methods: We collected publications related to exosomes in HF from the Web of Science Core Collection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!