Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The biology of bacterial cells is, in general, based on information encoded on circular chromosomes. Regulation of chromosome replication is an essential process that mostly takes place at the origin of replication (oriC), a locus unique per chromosome. Identification of high numbers of oriC is a prerequisite for systematic studies that could lead to insights into oriC functioning as well as the identification of novel drug targets for antibiotic development. Current methods for identifying oriC sequences rely on chromosome-wide nucleotide disparities and are therefore limited to fully sequenced genomes, leaving a large number of genomic fragments unstudied. Here, we present gammaBOriS (Gammaproteobacterial oriC Searcher), which identifies oriC sequences on gammaproteobacterial chromosomal fragments. It does so by employing motif-based machine learning methods. Using gammaBOriS, we created BOriS DB, which currently contains 25,827 gammaproteobacterial oriC sequences from 1,217 species, thus making it the largest available database for oriC sequences to date. Furthermore, we present gammaBOriTax, a machine-learning based approach for taxonomic classification of oriC sequences, which was trained on the sequences in BOriS DB. Finally, we extracted the motifs relevant for identification and classification decisions of the models. Our results suggest that machine learning sequence classification approaches can offer great support in functional motif identification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174414 | PMC |
http://dx.doi.org/10.1038/s41598-020-63424-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!