Forward Programming of Pluripotent Stem Cells to Neurons.

Curr Mol Med

Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Australia.

Published: December 2021

Pluripotent stem cells (PSCs) are powerful tools for studying developmental biology and neuronal diseases. Conventional differentiation protocols require several intermediate states and different culture conditions, inefficiently generating mixed subtypes of neuronal cells with immature characteristics. Direct programming of PSCs by forced expression of neuronal transcription factors has shown rapid cell fate determination with high purity as it can bypass sequential developmental steps that traditional culture requires. In this review, we focus on neuronal differentiation from PSCs to specific subtypes by various transcription factors. Furthermore, the potential applications and limitations of this novel technology are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1566524020666200421115251DOI Listing

Publication Analysis

Top Keywords

pluripotent stem
8
stem cells
8
transcription factors
8
forward programming
4
programming pluripotent
4
cells neurons
4
neurons pluripotent
4
cells pscs
4
pscs powerful
4
powerful tools
4

Similar Publications

Background: Protein-truncating mutations in the titin gene are associated with increased risk of atrial fibrillation. However, little is known about the underlying pathophysiology.

Methods: We identified a heterozygous titin truncating variant (TTNtv) in a patient with unexplained early onset atrial fibrillation and normal ventricular function.

View Article and Find Full Text PDF

Copy number variations of the human gene, resulting from megabase-scale microdeletions or microduplications in the 3p26.3 region, are frequently implicated in neurodevelopmental disorders such as intellectual disability and developmental delay. However, duplication of the full-length human gene presents with variable penetrance, resulting in phenotypes that range from neurodevelopmental disorders to no visible pathologies, even within the same family.

View Article and Find Full Text PDF

Liver cancer is a leading cause of cancer-related deaths worldwide, highlighting the need for innovative approaches to understand its complex biology and develop effective treatments. While traditional animal models have played a vital role in liver cancer research, ethical concerns and the demand for more human-relevant systems have driven the development of advanced models. Spheroids and organoids have emerged as powerful tools due to their ability to replicate tumor microenvironment and facilitate preclinical drug development.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) contribute to the resistance of intractable prostate cancer, and dopamine receptor (DR)D2 antagonists exhibit anticancer activity against prostate cancer and CSCs. Human prostate cancer PC-3 cells were used to generate CSC-like cells, serving as a surrogate system to identify the specific DR subtype the inhibition of which significantly affects prostate-derived CSCs. Additionally, the present study aimed to determine the downstream signaling molecules of this DR subtype that exert more profound effects compared with other DR subtypes.

View Article and Find Full Text PDF

Since their discovery, human induced pluripotent stem cells (hiPSCs) have been instrumental in biomedical research, particularly in the fields of disease modelling, drug screening and regenerative therapies. Their use has significantly increased over recent years driven by the ability of hiPSCs to provide differentiated cell models without requiring embryonic stem cells. Furthermore, the transition from integrating to non-integrating reprogramming methodologies has contributed to the increase in utilisation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!