Metabolomics is an effective biotechnological tool that can be used to attain comprehensive information on metabolites. In this study, the profiles of metabolites produced by wheat seedlings in response to drought stress were investigated using an untargeted approach with ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) to determine various physiological processes related to drought tolerance from the cross between drought-tolerant genotype (HX10) and drought-sensitive genotype (YN211). The current study results showed that under drought stress, HX10 exhibited higher growth indices than YN211. After drought stress treatment, a series of phenolics accumulated higher in HX10 than in YN211, whereas the amount of thymine, a pyrimidine, is almost 13 folds of that in YN211. These metabolites, as well as high levels of different amino acids, alkaloids, organic acids, and flavonoids in the drought treated HX10 could help to explain its strong drought-tolerant capacity. The current study explored the understanding of the mechanisms involved in the drought response of wheat seedling; these metabolome data could also be used for potential QTL or GWAS studies to identify locus (loci) or gene(s) associated with these metabolic traits for the crop improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238273PMC
http://dx.doi.org/10.3390/plants9040520DOI Listing

Publication Analysis

Top Keywords

drought stress
16
response drought
8
current study
8
drought
7
metabolomics response
4
stress
4
stress tolerance
4
tolerance chinese
4
chinese wheat
4
wheat genotypes
4

Similar Publications

Drought is one of the main environmental factors affecting plant survival and growth. Atraphaxis bracteata is a common desert plant mainly utilized in afforestation and desertification control. This study analyzed the morphological, physiological and molecular regulatory characteristics of different organs of A.

View Article and Find Full Text PDF

Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.

View Article and Find Full Text PDF

Forests face an escalating threat from the increasing frequency of extreme drought events driven by climate change. To address this challenge, it is crucial to understand how widely distributed species of economic or ecological importance may respond to drought stress. In this study, we examined the transcriptome of white spruce (Picea glauca (Moench) Voss) to identify key genes and metabolic pathways involved in the species' response to water stress.

View Article and Find Full Text PDF

Acylation represents a pivotal biochemical process that is instrumental in the modification of secondary metabolites throughout the growth and developmental stages of plants. The BAHD acyltransferase family within the plant kingdom predominantly utilizes coenzyme A thioester as the acyl donor, while employing alcohol or amine compounds as the acceptor substrates to facilitate acylation reactions. Using bioinformatics approaches, the gene family members in the genome of () were identified and characterized including gene structure, conserved motifs, -acting elements, and potential gene functions.

View Article and Find Full Text PDF

The impact of combined heat and drought stress was investigated in and compared to individual stresses to reveal additive effects and interactions. A combination of plant metabolomics and root and rhizosphere bacterial metabarcoding were used to unravel effects at the plant holobiont level. Hierarchical cluster analysis of metabolomics signatures pointed out two main clusters, one including heat and combined heat and drought, and the second cluster that included the control and drought treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!