Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electroactive polymer hydrogel offers several advantages for electrical devices, including straightforward synthesis, high conductivity, excellent redox behavior, structural robustness, and outstanding mechanical properties. Here, we report an efficient strategy for generating polyvinyl alcohol-polyaniline-multilayer graphene hydrogels (PVA-PANI-MLG HDGs) with excellent scalability and significantly improved mechanical, electrical, and electrochemical properties; the hydrogels were then utilized in coin cell supercapacitors. Production can proceed through the simple formation of boronate (-O-B-O-) bonds between PANI and PVA chains; strong intermolecular interactions between MLG, PANI, and PVA chains contribute to stronger and more rigid HDGs. We identified the optimal amount of PVA (5 wt.%) that produces a nanofiber-like PVA-PANI HDG with better charge transport properties than PANI HDGs produced by earlier approaches. The PVA-PANI-MLG HDG demonstrated superior tensile strength (8.10 MPa) and higher specific capacitance (498.9 F/cm, 166.3 F/cm, and 304.0 F/g) than PVA-PANI HDGs without MLG. The remarkable reliability of the PVA-PANI-MLG HDG was demonstrated by 92.6% retention after 3000 cycles of galvanostatic charge-discharge. The advantages of this HDG mean that a coin cell supercapacitor assembled using it is a promising energy storage device for mobile and miniaturized electronics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240595 | PMC |
http://dx.doi.org/10.3390/polym12040928 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!