A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fabrication of Poly(vinyl alcohol)-Polyaniline Nanofiber/Graphene Hydrogel for High-Performance Coin Cell Supercapacitor. | LitMetric

Electroactive polymer hydrogel offers several advantages for electrical devices, including straightforward synthesis, high conductivity, excellent redox behavior, structural robustness, and outstanding mechanical properties. Here, we report an efficient strategy for generating polyvinyl alcohol-polyaniline-multilayer graphene hydrogels (PVA-PANI-MLG HDGs) with excellent scalability and significantly improved mechanical, electrical, and electrochemical properties; the hydrogels were then utilized in coin cell supercapacitors. Production can proceed through the simple formation of boronate (-O-B-O-) bonds between PANI and PVA chains; strong intermolecular interactions between MLG, PANI, and PVA chains contribute to stronger and more rigid HDGs. We identified the optimal amount of PVA (5 wt.%) that produces a nanofiber-like PVA-PANI HDG with better charge transport properties than PANI HDGs produced by earlier approaches. The PVA-PANI-MLG HDG demonstrated superior tensile strength (8.10 MPa) and higher specific capacitance (498.9 F/cm, 166.3 F/cm, and 304.0 F/g) than PVA-PANI HDGs without MLG. The remarkable reliability of the PVA-PANI-MLG HDG was demonstrated by 92.6% retention after 3000 cycles of galvanostatic charge-discharge. The advantages of this HDG mean that a coin cell supercapacitor assembled using it is a promising energy storage device for mobile and miniaturized electronics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240595PMC
http://dx.doi.org/10.3390/polym12040928DOI Listing

Publication Analysis

Top Keywords

coin cell
12
cell supercapacitor
8
pani pva
8
pva chains
8
pva-pani-mlg hdg
8
hdg demonstrated
8
fabrication polyvinyl
4
polyvinyl alcohol-polyaniline
4
alcohol-polyaniline nanofiber/graphene
4
nanofiber/graphene hydrogel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!