The importance of the radio-frequency identification (RFID) technology and photovoltaic (PV) systems has been growing systematically in the modern world full of intelligent products connected to the Internet. Monitoring parameters of green energy plants is a crucial issue for efficient conversion of solar radiation, and cheap RFID transponders/sensors can be involved in this process to provide better performance of module supervision in scattered installations. Since many components of PV panels disturb the radio-wave propagation, research in the antenna scope has to be carried out to reach the proposed fusion. The problem with RFID transponders being detuned in close proximity to glass or metal surfaces can be solved on the basis of solutions known from the scientific literature. The authors went further, revealing a new antenna construction that can be fabricated straight on a cover glass of the PV panels. To achieve the established task, they incorporated advantages from the latest advancements in materials technology and low-power electronics and from the progress in understanding radio-wave propagation phenomena. The numerical model of the antenna was elaborated in the Hyper Lynx 3D EM software environment, and test samples were fabricated on the technology line of ML System Company. The convergence of calculated and measured antenna parameters confirms the design correctness. Thus, the studied antenna can be used to elaborate the cheap semipassive RFID transponders/sensors in the PV panel production lines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7231350 | PMC |
http://dx.doi.org/10.3390/mi11040420 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!