Today, graphene nanomaterials are produced on a large-scale and applied in various areas. The toxicity and hazards of graphene materials have aroused great concerns, in which the detection and quantification of graphene are essential for environmental risk evaluations. In this study, we developed a fast identification and quantification method for graphene oxide (GO) in aqueous environments using Raman spectroscopy. GO was chemically reduced by hydrazine hydrate to form partially reduced GO (PRGO), where the fluorescence from GO was largely reduced, and the Raman signals (G band and D band) were dominating. According to the Raman characteristics, GO was easily be distinguished from other carbon nanomaterials in aqueous environments, such as carbon nanotubes, fullerene and carbon nanoparticles. The GO concentration was quantified in the range of 0.001-0.6 mg/mL with good linearity. Using our technique, we did not find any GO in local water samples. The transport of GO dispersion in quartz sands was successfully quantified. Our results indicated that GO was conveniently quantified by Raman spectroscopy after partial reduction. The potential applications of our technique in the environmental risk evaluations of graphene materials are discussed further.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221548PMC
http://dx.doi.org/10.3390/nano10040770DOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
12
fast identification
8
identification quantification
8
quantification graphene
8
graphene oxide
8
oxide aqueous
8
graphene materials
8
environmental risk
8
risk evaluations
8
aqueous environments
8

Similar Publications

Machine Learning Boosted Entropy-Engineered Synthesis of CuCo Nanometric Solid Solution Alloys for Near-100% Nitrate-to-Ammonia Selectivity.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Jiangsu, China.

Nanometric solid solution alloys are utilized in a broad range of fields, including catalysis, energy storage, medical application, and sensor technology. Unfortunately, the synthesis of these alloys becomes increasingly challenging as the disparity between the metal elements grows, due to differences in atomic sizes, melting points, and chemical affinities. This study utilized a data-driven approach incorporating sample balancing enhancement techniques and multilayer perceptron (MLP) algorithms to improve the model's ability to handle imbalanced data, significantly boosting the efficiency of experimental parameter optimization.

View Article and Find Full Text PDF

The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.

View Article and Find Full Text PDF

Direct Observation of Hybridization Between Co 3d and S 2p Electronic Orbits: Moderating Sulfur Covalency to Pre-Activate Sulfur-Redox in Lithium-Sulfur Batteries.

Adv Sci (Weinh)

December 2024

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China.

Lithium-sulfur batteries (LSBs) offer high energy density and environmental benefits hampered by the shuttle effect related to sluggish redox reactions of long-chain lithium polysulfides (LiPSs). However, the fashion modification of the d-band center in separators is still ineffective, wherein the mechanism understanding always relies on theoretical calculations. This study visibly probed the evolution of the Co 3d-band center during charge and discharge using advanced inverse photoemission spectroscopy/ultraviolet photoemission spectroscopy (IPES/UPS), which offers reliable evidence and are consistent well with theoretical calculations.

View Article and Find Full Text PDF

Chloride-induced corrosion of steel rebars embedded in mortar was effectively controlled by blending of gallic acid in wet mixture. Mixing of optimized concentration of gallic acid (GA) inhibitor (0.125%) in mortars considerably increased the charge transfer resistance of embedded rebars (80.

View Article and Find Full Text PDF

The development of new urban areas necessitates building on increasingly scarce land, often overlaid on weak soil layers. Furthermore, climate change has exacerbated the extent of global arid lands, making it imperative to find sustainable soil stabilization and erosion mitigation methods. Thus, scientists have strived to find a plant-based biopolymer that favors several agricultural waste sources and provides high strength and durability for sustainable soil stabilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!