Purpose: To evaluate the biomechanical characteristics of recently introduced meniscal repair devices with a hand-tied, inside-out meniscal suture in a human meniscus model.
Methods: In detached adult human menisci, vertical longitudinal cuts were created 3 mm from the synovial-meniscal junction, simulating a bucket-handle meniscal tear. Each cut was repaired using a single device. Group 1 received a vertical mattress suture of No. 2-0 OrthoCord; group 2, TrueSpan device with PEEK (polyether ether ketone) anchors containing No. 2-0 OrthoCord suture; group 3, TrueSpan device with biodegradable poly-lactide-co-glycolide (PLGA) anchors containing No. 2-0 OrthoCord suture; group 4, Meniscal Cinch II device; group 5, AIR meniscal repair device; and group 6, FasT-Fix 360 device. All samples were preloaded at 5 N and cycled 200 times between 5 and 20 N. The specimens that survived cyclic loading were destructively tested at 12.5 mm/s. Endpoints included maximum load, displacement, stiffness, and failure mode.
Results: The mean failure loads were as follows: 95.8 N for OrthoCord suture, 87.1 N for TrueSpan with PEEK, 84.6 N for TrueSpan with PLGA, 48.6 N for Meniscal Cinch II, 72.3 N for AIR, and 68.1 N for FasT-Fix 360. Repairs performed with OrthoCord suture (P = .002) and both TrueSpan devices (P < .03) but not the FasT-Fix 360 device or AIR device were statistically significantly stronger than Meniscal Cinch II repairs. Mean cyclic displacement measured 1.1 mm for OrthoCord, 1.5 mm for TrueSpan with PEEK, 1.5 mm for TrueSpan with PLGA, 2.1 mm for Meniscal Cinch II, 1.1 mm for AIR, and 1.4 mm for FasT-Fix 360. The Meniscal Cinch II device showed more displacement than all other devices (P < .05). The FasT-Fix 360, AIR, and Meniscal Cinch II devices failed by anchor pullout from the peripheral meniscus. OrthoCord and both TrueSpan devices failed by suture pulling through the bucket-handle tissue.
Conclusions: OrthoCord suture is stronger than the AIR, FasT-Fix 360, and Meniscal Cinch II devices. The TrueSpan device with PEEK and TrueSpan device with PLGA are stronger than the Meniscal Cinch II device. The Meniscal Cinch II device failed during cyclic loading with greater cyclic displacement than the AIR device, FasT-Fix 360 device, OrthoCord, and TrueSpan device with PEEK. The Meniscal Cinch II, AIR, and FasT-Fix 360 devices failed by anchor pullout, whereas OrthoCord and both TrueSpan devices failed by suture pull-through.
Clinical Relevance: Some newly introduced all-inside meniscal repair devices show inferior failure strength compared with earlier versions that might adversely impact clinical outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arthro.2020.03.036 | DOI Listing |
Purpose: This study aimed to compare the biomechanical properties of four meniscal suture configurations-two simple sutures (TSS), two cinch sutures, a locking loop stitch (LLS), and a delta-grip stitch (DGS)-for transtibial pullout repair of medial meniscus posterior root tears (MMPRTs) using porcine menisci.
Methods: Forty porcine menisci were randomly assigned to each suture configuration with all-inside repair. All specimens were subjected to cyclic loading for 1000 cycles, followed by a load-to-failure test.
Knee Surg Sports Traumatol Arthrosc
November 2024
Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal.
Knee Surg Sports Traumatol Arthrosc
November 2024
Division of Sports Medicine, Department of Orthopedic Surgery, NYU Langone Health, New York, New York, USA.
Purpose: To evaluate long-term outcomes of patients treated with posterior medial meniscal root tear (PMMRT) repair through assessment of functional outcome scores and to identify patient surgical and magnetic resonance imaging (MRI) characteristics associated with improved outcomes.
Methods: This was a single-centre, retrospective study evaluating patients who had undergone a PMMR repair using a transtibial suture pullout technique with two locking cinch sutures. This was performed as a follow-up to previously published 2-year and 5-year outcome studies, using the same cohort.
JBJS Essent Surg Tech
August 2023
Ganga Medical Centre & Hospitals, Coimbatore, Tamil Nadu, India.
Background: Meniscal extrusion is a phenomenon in which a degenerative posterior horn tear, radial tear, or root tear results in displacement of the body of the meniscus medial to the tibial rim. The paramount function of the meniscus is to provide load distribution across the knee joint. Meniscal extrusion will prevent the meniscus from properly fulfilling this function and eventually leads to progression of osteoarthritis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!