Halophilic Halomonas bluephagenesis (H. bluephagenesis), a chassis for cost-effective Next Generation Industrial Biotechnology (NGIB), was for the first time engineered to successfully produce L-threonine, one of the aspartic family amino acids (AFAAs). Five exogenous genes including thrA*BC, lysC* and rhtC encoding homoserine dehydrogenase mutant at G433R, homoserine kinase, L-threonine synthase, aspartokinase mutant at T344M, S345L and T352I, and export transporter of threonine, respectively, were grouped into two expression modules for transcriptional tuning on plasmid- and chromosome-based systems in H. bluephagenesis, respectively, after pathway tuning debugging. Combined with deletion of import transporter or/and L-threonine dehydrogenase encoded by sstT or/and thd, respectively, the resulting recombinant H. bluephagenesis TDHR3-42-p226 produced 7.5 g/L and 33 g/L L-threonine when grown under open unsterile conditions in shake flasks and in a 7 L bioreactor, respectively. Engineering H. bluephagenesis demonstrates strong potential for production of diverse metabolic chemicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymben.2020.04.004 | DOI Listing |
Metab Eng Commun
December 2024
Peking University International Cancer Institute, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
In pursuit of reliable and efficient industrial microbes, this study integrates cutting-edge systems biology tools with TD01, a robust halophilic bacterium. We generated the complete and annotated circular genome sequence for this model organism, constructed and meticulously curated a genome-scale metabolic network, achieving striking 86.32% agreement with Biolog Phenotype Microarray data and visualize the network via an interactive Electron/Thrift server architecture.
View Article and Find Full Text PDFMetab Eng
November 2024
School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China; Industrial Biocatalysis Key Lab of the Ministry of Education, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China. Electronic address:
The trade-offs exist between microbial growth and bioproduct synthesis including intracellular polyester polyhydroxybutyrate (PHB). Under nitrogen limitation, more carbon flux is directed to PHB synthesis while growth is inhibited with diminishing overall carbon utilization, similar to the suboptimal carbon utilization during glycolysis-derived pyruvate decarboxylation. This study reconfigured the central carbon network of Halomonas bluephagenesis to improve PHB yield theoretically and practically.
View Article and Find Full Text PDFJ Biotechnol
December 2024
Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:
Bioresour Technol
December 2024
Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; MOE Key Lab of Industrial Biocatalysts, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China. Electronic address:
Gamma-Aminobutyric acid (GABA) is a derivative of L-glutamate, also a precursor for the synthesis of 2-pyrrolidone, which is a monomer of nylon-4. This study achieved a one-step biosynthesis of GABA and 2-pyrrolidone by Halomonas bluephagenesis overexpressing key genes involved in GABA and 2-pyrrolidone synthesis and deleting GABA degradation genes combined with reducing the degradation of 2-pyrrolidone precursor. The resulting H.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
August 2024
Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
Itaconic acid (IA) is one of the twelve high value-added platform compounds applied in various fields including coatings, adhesives, plastics, resins, and biofuels. In this study, we established a one-pot catalytic synthesis system for IA from citric acid based on the engineered salt-tolerant bacterial strain TDZI-08 after investigating factors that hindered the process and optimizing the carbon source, nitrogen source, inducer addition time, and surfactant dosage. The open, non-sterile, one-pot synthesis with TDZI-08 in a 5 L fermenter achieved the highest IA titer of 40.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!